Year 6

Maths Curriculum

KNOW IT!
TEACH IT!
APPLY IT!

Key Objectives	Possible Teaching Sequence
- Read, write, order and compare numbers up to - 10,000, 000 and determine the value of each digit.	Read, write, order and compare... \Rightarrow Know the place value of 8 digit numbers. \Rightarrow Represent with various manipulatives and visuals e.g. place value counters, gattegno chart.
- Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit.	
- Count forwards or backwards in steps of power of 10 for any given number up to 1,000,000.	\Rightarrow Partition 8 digit numbers (thousands, hundreds, tens and ones). \Rightarrow Partition in different combinations e.g. 50, 004, 500 $=50$ millions and 45 hundreds.
- Round any whole number to a required degree of accuracy.	\Rightarrow Order a set of numbers from largest to smallest; smallest to largest on a variety of scales and number lines.
- Round any number up to $1,000,000$ to the nearest $10,100,1000$, 10,000 and 100,000.	\Rightarrow Use <, > and = signs. Round any numbers in context...
- Use negative numbers in context, and calculate intervals across zero.	\Rightarrow Identify the digit within the number to round to using place value knowledge.
- Interpret negative numbers in context, count forwards and	\Rightarrow Recognise the position of the digit relative to multiples of $10 / 100 / 1000$ etc either side and place on a number line.
backwards with positive and negative whole numbers, including through zero.	\Rightarrow Determine which multiple the number is closest to and round to given multiple.
- Read Roman numerals to $1000(\mathrm{M})$ and recognise years written in Roman numerals.	\Rightarrow Spot patterns and apply when rounding e.g. 4 or below, round down. Use negative numbers in context...
	\Rightarrow Understand zero and the concept of negative numbers.
	\Rightarrow Use the negative sign and terminology e.g. negative 4 not minus 4.
	\Rightarrow Place both negative and positive numbers on a number line, seeing the pattern of negative numbers.
	\Rightarrow Recognise the distance between a positive and negative number, using knowledge to calculate an interval.

COMMON MISCONCEPTIONS

- Not knowing to use 0 as a place holder when a column is empty.
- Not knowing the value of a digit e.g. ' 3 in 3421 is worth 3.' instead of ' 3 in 3421 is worth 3000.'
- Not recognising that numbers can be partitioned in more ways than just its place value heading.
- Comparing numbers by the first digit, not the number of digits.
- Misunderstanding the value of negative numbers e.g. -5 is more than -1 or writing a sequence as $23,13,3,-3,-13$
- Looking at the wrong column when rounding e.g. looking at the hundreds column when rounding to the nearest 100.
- Missing out 0 when counting forwards/backwards.

Stem Sentences

- 'There are ten millions in ten million.
- 'There are ten one thousand thousands in a million.'
- ' $23,456,132$ is $23,456,132$ ones. $23,456,132$ is 23 millions and 456, 132 ones. ${ }^{\prime}$
- 'When rounding to the nearest
\qquad , the \qquad digit is the digit to consider. If the digit is 4 or less, round down. If it is 5 or more then round up.'
- 'When we count back from 0 , the digit gets larger but the value gets smaller.'

Vocabulary

- Represent
- Representation
- Value
- Sequence
- Identify
- Estimate/ Approximate
- Roman Numerals
- Digit
- Partition
- Inequality symbol
- Ascending
- Descending
- Negative number
- Compare
- Partition

Key Definitions

\Rightarrow Round - giving a number a nearby value when you don't need it to be exact.
\Rightarrow Negative number - any number less than zero written with a negative sign.
\Rightarrow Positive number - any number greater than zero.
\Rightarrow Multiple - product of one number multiplied by another number.
\Rightarrow Power of $\mathbf{1 0}$ - ten multiplied by itself a certain number of times.

KEY OBJECTIVES
- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal
written method, including long multiplication for 2 digit numbers.
- Divide numbers up to 4 digits by a two-digit whole number using the formal
written method of long division, and interpret remainders as whole number
remainders, fractions, or by rounding, as appropriate for the context.
- Divide numbers up to 4 digits by a two-digit number using the formal written
method of short division where appropriate, interpreting remainders
according to the context.
- Divide numbers up to 4 digits by a one-digit number using the formal written
method of short division and interpret remainders appropriately for the
context.
- Perform mental calculations, including with mixed operations \& large
numbers.
- Add and subtract numbers mentally with increasingly large numbers, multiply
and divide numbers mentally drawing upon known facts.
- Identify common factors, common multiples and prime numbers.
- Identify multiples \& factors, including finding all factor pairs of a number, and
common factors of two numbers.
- Know and use the vocabulary of prime numbers, prime factors \& composite
(non-prime) numbers.
- Establish whether a number up to 100 is prime and recall prime numbers up
to 19 .
- Use their knowledge of the order of operations to carry out calculations
involving the four operations .
- Recognise and use square numbers and cube numbers, and the notation for
squared (2) and cubed (3).
- Use estimation to check answers to calculations and determine, in the
context of a problem, an appropriate degree of accuracy.

Possible Teaching Sequence

Multiply multi-digit numbers...
\Rightarrow Teachers should refer to calculations policy for how to explicitly teach the steps required in long multiplication.
Divide numbers up to 4 digits...long division \& short division.
\Rightarrow Distinguish between grouping and sharing using practical apparatus.
\Rightarrow Teachers should refer to calculations policy for how to explicitly teach the steps required in long division.
\Rightarrow Look at different written problems, determining the required answer; discuss the remainder that is needed.
\Rightarrow Apply this logic to a range of calculations including both written and arithmetical.

Perform mental calculations...

\Rightarrow Count forwards and backwards in steps of any given value, recognising the place value of digits within a number and how they change
\Rightarrow Round and adjust (possibly jotting on a number line) to add and subtract.
\Rightarrow Apply knowledge of place value and partitioning to add or subtract numbers with multiple digits.
\Rightarrow Apply knowledge of number bonds to cross boundaries of multiples of 10 when adding numbers
\Rightarrow Use knowledge of doubling/halving to double/half known table facts in mental multiplication/division e.g. I know $12 \times 4=48$ therefore $24 \times 4=96$.
\Rightarrow Use knowledge of multiplying/dividing by 10/100/1000 to perform menta calculations with decimals e.g. I know $3 \times 5=15$, therefore $0.3 \times 5=1.5$. dentify common factors..
\Rightarrow Find factors for two different numbers and identify similar factors, recognising this as common.
\Rightarrow Find multiples for two different numbers and identify similar multiples, recognising this as common.
\Rightarrow Learn off by heart prime numbers up to 20 .
\Rightarrow Identify times table patterns that could quickly determine the likelihood of a number being prime.
\Rightarrow Break a number down to its prime factors through a prime factor tree.
Use their knowledge of the order of operations...
\Rightarrow Understand what is meant by order of operations
\Rightarrow Know and understand squared, cubed and brackets.
\Rightarrow Learn in order the abbreviation BODMAS \& understand how not following this systematic order could provide different answers.

Stem Sentences

- 'If one factor is made ten times the size, the product will be ten times the size e.g. $12 \times 17=204$ so $12 \times 170=$
- 'If factors are ten times smaller, the product will be ten times smaller e.g. $12 \times 8=96$ so 1.2×8 or $12 \times 0.8=$.'
- 'Factors are the whole numbers that multiply to make a number.'
- 'I know that 389 is close to 400 so in $389+25$, I can do $400+25$, then subtract 11.'
- 'For calculations that involve both + and - steps, we can + then - or - then +; the final answer is the same.'
- 'In column addition, we start at the right hand side.
- 'If the column sum is equal to 10 or more then we must regroup.
- 'Subtraction cannot be done in any order.'
- 'When using column subtraction if the digit on the top is lower than that of the digit on the bottom then exchange.

VOCABULARY

- Mental

- Efficient
- Calculation
- Partition
- Addition/Add
- Sum
- Tota
- Plus
- Altogether
- Subtract
- Difference
- Fewer
- Less
- Takeaway
- Minus
- More
- Combined
- Column/Row
- Exchange
- Regroup
- Multiplication/Multiply
- Division/Divide
- Recall
- Double/Half
- Derive
- Multiple
- Groups of
- Times
- Repeat
- Left /Remainder
- Scale
- Bar model
- Systematic
- Inverse

COMMON MISCONCEPTIONS

Key Definitions

See also misconceptions from previous years as many are still relevant in Y6.

- Thinking that formal written methods are the only way to + or - rather than choosing the most efficient methods e.g. using a column method for 9000-8999.
- Not multiplying all given digits in a number by all given digits in the multiplier e.g. 23×45 becomes $2 \times 4 \& 3 \times 5$.
- Mixing up factors and multiples.
- Assuming 1 is a prime number as it is only divisible by 1 instead of recognising that a prime number has 2 factors.
- Thinking that ${ }^{2}$ means $\times 2$ instead of multiplying by itself.
\Rightarrow Prime number - a number divisible by only 2 factors: one and itself
\Rightarrow Factor - a whole number that divides exactly into another number.
\Rightarrow Product - the result when two numbers are multiplied together
\Rightarrow Order of Operations - the order in which mathematical calculations must be done
\Rightarrow Equation - mathematical statement containing an = sign to show 2 expressions are equal.
\Rightarrow Expression - one or a group of terms and may include at least 2 numbers and at least 1 operation.

Key Objectives

Possible Teaching Sequence

Use common factors...

\Rightarrow Identify common factors of the numerator and denominator of a given fraction.
\Rightarrow Divide both the numerator and denominator, recognising when the fraction cannot be divided any further and reasoning why
\Rightarrow Understand this as the simplest form.
\Rightarrow Identify common factors and multiples of given denominators and numerators of multiple fractions.
\Rightarrow Convert the fractions so that the denominators are the same, remembering to perform the same calculation to the numerator also.
Compare and order fractions...
\Rightarrow Recognise when a mixed number has more parts and is therefore greater, without needing to convert the fractions.
\Rightarrow Recognise when the parts in a fraction are greater than the parts in another given fraction, therefore meaning the fraction is larger (e.g. $\frac{7}{8}$ is greater than $\frac{1}{7}$), meaning that the fractions do not need to be converted. ${ }^{8}$
\Rightarrow Use knowledge of common factors and multiples to convert fractions so they have the same denominators.
\Rightarrow Compare using <, > and = signs.
Add and subtract fractions...
\Rightarrow Add and subtract fractions with the same denominator recognising that the numerator shows the number of parts you have and therefore only this part of the fraction is added/subtracted.
\Rightarrow Use knowledge of common factors \& multiples to convert fractions so they have the same denominators to add non-unit fractions with different denominators.
\Rightarrow Progress to adding mixed numbers, adding the wholes and then the parts, converting denominators if necessary.
\Rightarrow Subtract mixed numbers, subtracting the wholes then the parts and converting if necessary.
\Rightarrow Add and subtract mixed numbers where exchanging and regrouping is necessary
\Rightarrow Always convert the answer to the simplest form

Multiply simple pairs..

\Rightarrow Recognise what the multiplication statement says e.g. $1 / 2 \times 1 / 4$ means half of a quarter.
\Rightarrow Show this with bar models to understand why $1 / 2 \times 1 / 4=1$.
\Rightarrow Progress to multiplying fractions without the bar model. ${ }^{8}$
\Rightarrow Multiply mixed numbers by fractions e.g. $1 / \frac{1}{2} \times 1 / 4$.

Divide proper fractions..

\Rightarrow Recognise what the division statement means e.g. $2 \div 1 / 2$ means $1 / 2$ of 2 and therefore means $1 / 2 \times 2$ as \times means of.
\Rightarrow Show the above calculation with bar models to aid understanding.
\Rightarrow Recognise that the whole number can also be written as $\frac{2}{1}$ so that the calculation resembles multiplying two fractions.
\Rightarrow Carry out the multiplication in a similar manner to multiplying two fractions.

Stem Sentences

- 'To simplify a fraction, find the highest common factor of the numerator and denominator.'
- 'When adding/subtracting mixed numbers, add/subtract the whole, check the denominators, add/subtract the numerator.'
- 'When adding/subtracting fractions, check that the denominators are the same, then add/subtract the numerator.
- 'To multiply fractions, multiply the numerators and multiply the denominators.
- 'To find an equivalent fraction, you must multiply/divide both the numerator and denominator in the same way.
- 'If the denominators are the same, the greater the numerator, the greater the fraction.'
- 'If numerators are the same, the greater the denominator, the smaller the fraction.'

Common Misconceptions

- Adding/subtracting the denominator when adding/subtracting fractions linked to knowledge of numerator/denominator
- Adding/subtracting to find equivalent fractions instead of multiplying/ dividing.
- Simplifying a fraction by dividing the numerator and denominator by 2 until you can't anymore.
- Always thinking that wholes must always be exchanged or regrouped in any calculation.

Key Definitions

\Rightarrow Mixed number - a number made up of a whole number and a fraction.
\Rightarrow Proper fraction - a fraction where the numerator is less than the denominator.
\Rightarrow Improper fraction - a fraction where the numerator is greater than the denominator; a fraction larger than a whole.

- Fraction
- Tenths
- Hundredths
- Thousandths
- Equal
- Part
- Equivalent
- Whole
- Factors
- Multiples
- Numerator
- Denominator
- Decimal point
- Common factor
- Unit fraction

Key Objectives

- Associate a fraction with division and calculate decimal fraction equivalents e.g. 0.375 , for a simple fraction e.g. $3 / 8$.
- Read and write decimals numbers as fractions
- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.
- Identify the value of each digit in numbers given to three Identify the value of each digit in numbers given to three
decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places.
- Read, write, order \& compare numbers with up to 3 decimal places.
- Multiply 1-digit numbers with up to 2 decimal places by whole numbers.
- Use written division methods in cases where the answer has up to 2 decimal places.
- Solve problems which require answers to be rounded to specific degrees of accuracy.
- Round decimals with 2 decimals places to the nearest whole number and to 1 decimal place
- Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
- Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
- Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal.
- Know percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,{ }^{2} / 5$, $4 / 5$ and those fractions with a denominator of a multiple of 10 and 25.
possible Teaching Sequence

Associate a fraction...

\Rightarrow Recognise that $1 / 4$ is the same as $1 \div 4$ etc.
\Rightarrow Place the numerator inside the bus stop and denominator outside.
\Rightarrow Place a decimal point followed by zeros after the numerator to allow for any remainders to be exchanged e.g. one unit is exchanged for ten tenths.
\Rightarrow Ensure there is a decimal point pre-placed above the bus stop to allow for answer to be written correctly.

dentify the value of..

\Rightarrow Recognise what tenths, hundredths and thousandths actually mean
\Rightarrow Identify how many decimal places are in any given number.
\Rightarrow Understand that multiplying by 10,100 and 1000 means making any given digit this many times bigger and subsequent effect on the place value of the digit.
\Rightarrow Understand that dividing by 10,100 and 1000 means sharing a digit into this many pieces and subsequent effect on the place value of the digit

Multiply 1-digit numbers with

\Rightarrow Place the decimal number above the multiplier and ensure that the answer box has decimal points pre-placed.
\Rightarrow Follow written calculation method for multiplying numbers together, ensuring the digits are placed correctly in relation to the decimal being multiplied.
\Rightarrow Progress to knowledge of tables to assist with x decimals, recognising where an answer cannot be correct, or with removing \& replacing the decimal point.

Use written methods...Solve problems...

\Rightarrow Place the decimal within the bus stop and ensure there is a decimal pre-placed above the bus stop where the answer will be.
\Rightarrow Recognise that zeros can be used as place holders when there is a remainder that needs to be regrouped (see guidance in previous step)
\Rightarrow Progress to knowledge of tables to assist with \div decimals, recognising where an answer can't be correct, or with removing and replacing the decimal point.
\Rightarrow Round the answer to suit the context of the problem.
Recall and use equivalences..
\Rightarrow Identify why decimals can easily be converted to equivalents including 10, 100 or 1000 as the denominator
\Rightarrow Relate knowledge of $\overline{10}, \overline{100}$ and $\overline{1000}$ to decimal place value and convert fractions to decimals and vice versa.
\Rightarrow Use knowledge described above to change fractions that do not have an equivalent denominator of $\overline{10}, \overline{100}$ and $\overline{1000}$ to a decimal.
\Rightarrow Understand that \% means out of 100 and link to knowledge of hundredths within decimals and 100 within fractions to change decimals to $\%$ and vice versa.
\Rightarrow Recognise that a \% can include a decimal value. Apply knowledge to numbers > 1 e.g $11 / 2=1.5=150 \%$.
Solve problems involving the calculation of percentages...
\Rightarrow Understand what percentage means \& identify that a total sample is 100%
\Rightarrow Recognise that $100 \%=$ one hundred lots of 1% or ten lots of 10%
\Rightarrow Establish how to find 1% and 10% by dividing by 10 and 100 .
\Rightarrow Represent finding a percentage of an amount in a bar model
\Rightarrow On finding 1% and 10%, scale these up or down to find other amounts
\Rightarrow Link knowledge of percentages to fractions, and when finding a percentage of amount, find a fraction of an amount. Use bar models to support.

Stem Sentences

- 'I know percent means out of 100 so 25% is 25
100.'
- '50\% x \qquad means 50% of
- 'To express a fraction as a decimal divide the numerator by the denominator.'
- ' \qquad cimal places means there decimal point.

- Fraction

- Tenths
- Hundredths

Thousandth
Equal

- Part
- Equivalent
- Whole
- Factors
- Multiples
- Numerator
- Denominator
- Decimal point

COMMON MISCONCEPTIONS

- A number with more decimal places is greater e.g. 0.03 is greate than 0.3.
- When converting fractions to decimals, not using their knowledge that a numerator can be divided by the denominator. Therefore although they recognise simple fraction/decimal conversions, they struggle converting fractions such as $23 / 100$.
- When finding 10% of a number, multiplying by 10 instead of dividing by 10 .
- Reading a decimal as zero point twenty four instead of zero point two four.
- Not recognising that x means of to assist with calculating percentages of quantities or when dividing a fraction by a whole.
- Thinking that $1 / 10=10 \%$ so $1 / 20=20 \%$.
- $0.84=84 / 10$.
- 0.3 is less than 12% because 3 is less than 12 .

Key Definitions

\Rightarrow Percent/Percentage - a part out of a hundred.
\Rightarrow Decimal place - the position of a digit to the right of the decimal point.

Year 6

Key Objectives

- Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.
- Convert between different units of metric measure e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre).
- Convert between miles and kilometres.
- Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.
- Recognise that shapes with the same areas can have different perimeters and vice versa.
- Calculate the area of parallelograms and triangles
- Calculate, estimate \& compare volume of cubes \& cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units e.g. mm^{3} and km^{3}.
- Recognise when it is possible to use formulae for area and volume of shapes.
- Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres.
- Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm 2) and square metres (m2) and estimate the area of irregular shapes.
- Estimate volume e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes) and capacity e.g. using water.

Possible Teaching Sequence

Use, read, write and convert...
\Rightarrow Know what units of measure to use to calculate dimensions of given objects, liquids, spaces etc.
\Rightarrow Identify the most suitable unit of that measure e.g. mm, cm or m .
\Rightarrow Know facts from 'know it' pages to convert quickly between different measures
\Rightarrow Apply knowledge of x and \div by 10, 100, 1000 to convert between measures. Convert between miles...
\Rightarrow Understand the difference between metric and imperial.
\Rightarrow Know that for every 5 miles, there are 8 km
\Rightarrow Represent a given number of miles and km in a bar model to see connection.
\Rightarrow Use knowledge of scaling to convert between miles and km.
\Rightarrow Use line graphs to calculate approximate miles and km conversions Recognise that shapes...
\Rightarrow Know what is meant by the terms area and perimeter.
\Rightarrow Know how to calculate the area and perimeter of a shape.
\Rightarrow Given a number of cm squares, create different shapes and calculate the perimeters, recognising the relationship between perimeter and area.
\Rightarrow Begin to use knowledge of factor pairs to determine measurements for different sides of rectangles etc. that may give the same area but a different perimeter.
\Rightarrow Explore with simple line drawings how to make shapes with the same perimeter and calculate the area.
\Rightarrow Begin to use knowledge of factor pairs to construct rectangles that will have the same perimeter but a different area
Calculate the area of parallelograms...
\Rightarrow Recognise the relationship between triangles and rectangles.
\Rightarrow Use relationship to determine how we can calculate the area of triangles.
\Rightarrow Use the formula $1 / 2 \mathrm{~b} \times \mathrm{h}$.
\Rightarrow Recognise the relationship between parallelograms and rectangles, distinguishing carefully between height and width.
\Rightarrow Use relationship to determine how we can calculate the area of parallelograms. \Rightarrow Use the formula $b \times h$.

Calculate, estimate and compare volume of cubes...

\Rightarrow Distinguish between volume and capacity.
\Rightarrow Recognise when a shape has a volume.
\Rightarrow Understand what is meant by volume through using cubes to build different 3D shapes and counting these to calculate the volume.
\Rightarrow Recognise that cubes/cuboids have a depth, height and width
\Rightarrow Learn the formula for calculating volume \& apply, recording accurately with cm^{3}. \Rightarrow Extend to other measurements e.g. $\mathrm{mm}^{3}, \mathrm{~km}^{3}$ etc.

Recognise when it is possible..

\Rightarrow Know how to calculate the area of a rectangle/square/triangle/parallelogram and recognise this as a formula.
\Rightarrow Recognise where a compound shape can be broken down into regular shapes (listed above) where a formula can be used to calculate the area
\Rightarrow Recognise where a compound 3D shape can be broken down into cubes and cuboids to calculate the volume

Stem Sentences

- 'To find the area of a rectangle times the length by the width e.g. Area=l x w.'
- 'To find the area of a triangle, half the base and times by the height.'
- 'To find the area of a parallelogram, times the base by the height.'
- 'To calculate the volume of cubes and cuboids, multiply width by height by depth.
- ' 5 miles is approximately 8 km .'
- 'To convert km to m / kg to g / l to ml multiply by $1000 .{ }^{\prime}$
- 'To convert m to km / g to $\mathrm{kg} / \mathrm{ml}$ to I divide by 1000.'

COMMON MISCONCEPTIONS

- Not x / \div by $10 / 100 / 1000$ correctly when converting measures or not seeing the link between converting measures and x / \div by 10/100/1000.
- May think that a km is longer than a mile because the ratio is $5: 8$, therefore assuming that the 8 means a km is longer.
- May think that because two shapes have the same area, they must be equal in dimensions.
- Confusing area and perimeter
- Calculating the area of a triangle or parallelogram by using a length of a side rather than the height
- Not recognising the height of triangles and parallelograms when they are in different orientations.
- Not counting the cubes that they cannot see when counting cubes to find volume.
- Just multiplying the dimensions, when calculating volume or area, and not recognising the unit of measure e.g. in $50 \mathrm{~cm} \times 1 \mathrm{~m} \times 2 \mathrm{~m}$.

Key Definitions

\Rightarrow Capacity - the amount a container or object can hold, (measured in ml / l).
\Rightarrow Volume - amount of solid space occupied by an object (measured in cm^{3}). \Rightarrow Perimeter - the distance around the outside of a 2D shape.
\Rightarrow Area - the amount of space a shape covers.
\Rightarrow Formula - a mathematical rule to show the relationship between a calculation and an answer.

Key Objectives

- Draw 2-D shapes using given dimensions and angles.
- Know that angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.
- Draw given angles and measure them in degrees.
- Identify:
\Rightarrow angles at a point and one whole turn360°;
\Rightarrow angles at a point on a straight line and $1 / 2$ a turn;
\Rightarrow other multiples of 90°.
- Recognise, describe and build simple 3-D shapes, including making nets.
- Identify 3D shapes, including cubes and cuboids from 2D representations.
- Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons.
- Use the properties of rectangles to deduce related facts and find missing lengths and angles.
- Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.

Possible Teaching Sequence

Draw 2D shapes.

\Rightarrow Know how many degrees in an acute, obtuse, right and reflex angle, and be able to identify them in a range of shapes.
\Rightarrow Know how to use a protractor accurately to measure and draw angles.
\Rightarrow Know how to use a ruler correctly to measure lines.
\Rightarrow Draw a base line and measure given angles from it, making small notations to show the direction the next line must be travelling from.
\Rightarrow Draw lines from the corners of the original line using the notations created previously to draw lines in the correct orientation
\Rightarrow Construct shapes from representations that have been scaled down.
Recognise, describe and build..
\Rightarrow Know the terminology for 3D shapes: vertices, edges, faces
\Rightarrow Know that 3D shapes have depth and are constructed of 2D shapes.
\Rightarrow Recognise the properties of different 3D shapes.
\Rightarrow Identify given nets that could make a 3D shape from different orientations and recognise that different nets can make the same shape.
\Rightarrow Construct 3D shapes from given nets; construct their own nets to create 3D shapes.
\Rightarrow Solve visualisation problems that involves orientating 3D shapes in different positions and recording new markings/positions

Compare and classify

\Rightarrow Recognise regular and irregular 2D shapes from the number of sides and corners (vertices).
\Rightarrow Identify lines of symmetry, parallel/perpendicular lines \& angles within 2D shapes
\Rightarrow Identify facts such as, a triangle can never have two obtuse angles etc.
\Rightarrow Understand that the angles in a triangle add up to 180° by cutting off the corners and rearranging into a straight line.
\Rightarrow Use the above knowledge to calculate missing angles in triangles.
\Rightarrow Understand that the angles in a quadrilateral add up to 360° by cutting off the corners and rearranging into a full rotation.
\Rightarrow Use the above knowledge to calculate missing angles in quadrilaterals.
\Rightarrow Show how regular polygons can be separated into triangles; work out how many triangles are in a polygon by joining corners together; use this to calculate what the angles in a regular polygon add up to \& the value of each individual angle.
\Rightarrow Apply knowledge of angles in triangles, quadrilaterals and polygons to solve more in depth problems that involve several 2D shapes and straight lines.

COMMON MISCONCEPTIONS

- Not counting hidden vertices, faces and edges on a 2D representation of a 3D shape.
- Reading the wrong scale when measuring angles.
- Measuring acute angle instead of reflex.
- Not recognising reflex angles within irregular shapes.
- Not recognising straight lines within shapes or around a point etc.
- Thinking that any opposite angles are equal, instead of just those on intersecting straight lines.
- Not recognising opposite equal angles because they are labelled differently.

Stem Sentences

- 'All the angles in a triangle total 180°.'
- 'All the angles in a quadrilateral total 360°.'
- 'A regular polygon is composed of triangles.'
- 'An isosceles triangle has two angles that are equal.'
- 'A scalene triangle has no equal sides or angles.

VOCABULARY

- Acute
- Obtuse
- Regular
- Irregular
- Polygon
- Vertices
- Faces
- Base
- Edges
- Reflection
- Translation
- Paralle
- Protractor
- Perpendicular
- Diagonal
- Co-ordinate

Key Definitions

\Rightarrow Prism - a 3D shape with two parallel faces that are the same 2D shape. All the other faces are rectangles.
\Rightarrow Polygon - a 2D shape with 3 or more straight sides.
\Rightarrow Intersect - to cross over each other.
\Rightarrow Regular - a shape with all sides and angles equal.
\Rightarrow Irregular - a shape where sides and angles are different sizes and lengths.

Key Objectives

Possible Teaching Sequence

Illustrate and name parts of circles...

\Rightarrow Recognise circles in different representations, distinguishing between a circle and an oval.
\Rightarrow Identify and name the parts of a circle
\Rightarrow Recognise the link between the diameter and the radius-both must connect with the centre point.
\Rightarrow Use this knowledge to recognise that a radius is always half the diameter and the diameter is double the radius. \Rightarrow Calculate radius and diameters from given values.

Recognise angles where they meet...

\Rightarrow Recognise straight lines and full rotations in a variety of representations e.g. attached to shapes; on a group of several lines intersecting/joining; on parallel lines intersected by other lines.
\Rightarrow Understand what it means for two angles to be vertically opposite.
\Rightarrow Recognise vertically opposite angles in a range of representations.
\Rightarrow Calculate vertically opposite angles.
\Rightarrow Apply knowledge of full rotations to determine the remaining two opposite angles, remembering to divide the remaining total by 2 (if required).

Describe positions on the full coordinate grid...

\Rightarrow Count forwards and backwards across 0 , including negative numbers.
\Rightarrow Relate knowledge of negative numbers on a number line to construct 4 quadrant grids.
\Rightarrow Know that when we read coordinates, we read x then y.
\Rightarrow Plot and read co-ordinates in all 4 quadrant, recording coordinate (x, y).

Draw and translate simple shapes..

\Rightarrow Read and write coordinates.

\Rightarrow Join given coordinates to plot a simple shape.
\Rightarrow Know the prefix trans means across and therefore translate means to move across.
\Rightarrow Count the jumps, not the squares, to successfully translate a shape.
\Rightarrow Know what is meant by a reflection and mirror image, reflecting shapes accurately.
\Rightarrow Understand that both the x and y axis can act as a mirror line.
\Rightarrow Use a mirror to aid with simple reflections.
\Rightarrow Use points/locations/numbers of squares on the quadrant grid to help them plot a reflection, remembering it must be a mirror image.
\Rightarrow Predict missing coordinates by applying their knowledge of shape

- 'All the angles in a triangle total 180°.
- 'All the angles in a quadrilateral total 360°.
- 'When two straight lines intersect, vertically opposite angles are equal.
- 'Adjacent angles on a straight line total 180°.
- 'The radius is always half the diameter.'
- 'The diameter is always double the radius.'
- 'The diameter must travel through the centre of the circle.'
- 'The radius must touch the centre of the circle.
- 'When we read coordinates, we read x then y .
- 'To translate a shape, count the jumps.'

COMMON Misconceptions

- Reading the wrong scale when measuring angles.
- Not recognising straight lines within shapes or around a point etc.
- Thinking that any opposite angles are equal, instead of just those on intersecting straight lines
- Not recognising opposite equal angles because they are labelled differently.
- Not recognising that angles labelled with the same letter must be equal in value.

- Counting squares not jumps when translating.
- Translating, instead of flipping a shape around a mirror line.
- Not recognising that the radius/diameter can be at any point on the circumference, as long as it travels through the centre.
- Not realising that the radius/diameter MUST travel through the centre and therefore creating chords instead
- Doubling the diameter to calculate the radius or halving the radius to find the diameter (incorrect understanding of terminology).

Key Definitions
\Rightarrow Radius - the distance from the centre of the circle to the circumference.
\Rightarrow Diameter - a straight line passing through the centre of the circle to touch both sides of the circumference.
\Rightarrow Circumference - the distance around the edge of the circle.
\Rightarrow Chord - a straight line joining two points on the circumference of a circle.
\Rightarrow Segment - a section of a circle bound by a chord
\Rightarrow Vertically opposite - a pair of angles directly opposite each other due to the intersection of two straight lines.

Key Objectives	Possible Teaching Sequence
- Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. - Solve problems involving similar shapes where the scale factor is known or can be found. - Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	Solve problems involving the relative sizes... \Rightarrow Understand what is meant by the terminology ratio and proportion. \Rightarrow Compare and record two groups using correct ratio notation. \Rightarrow Record a group as a proportion of the whole, recognising that this is also a fraction. \Rightarrow Know that whenever we change one side of a ratio, we must change the other side. \Rightarrow Increase/decrease two parts by their relative quantities to scale a ratio up or down. \Rightarrow Know that ratios can be simplified or made bigger, and that these are equivalent ratios, linking to knowledge of equivalent fractions. Solve problems involving similar shapes... \Rightarrow Understand what is meant by scale and scale factor. \Rightarrow Enlarge or reduce a shape/measurement from a given scale factor. \Rightarrow Calculate scale factors by comparing shapes with given measurements, including scale factors that may be decimals e.g.1.5. \Rightarrow Calculate missing sides from given scale factors. \Rightarrow Calculate missing sides where the scale factor is unknown. \Rightarrow Identify where shapes are similar and a scale factor can be found. Solve problems involving unequal sharing... \Rightarrow Draw bar models to represent problems visually. \Rightarrow Use language of ratio and proportion to establish given parts. \Rightarrow Use given ratios or proportions in order to calculate missing parts of wholes or ratios. \Rightarrow Use knowledge of ratio and proportion, and of scaling, to calculate different amounts from given amounts e.g. scaling a recipe to feed 4 people rather than 6 .

COMMON MISCONCEPTIONS

- Children may record ratios the wrong way round e.g. when comparing 3 yellow counters and 2 red counters. 'The ratio of yellow to red is $2: 3$.'
- Children may misuse addition in proportional problems. For example, if for every 1 white chocolate there are 2 milk chocolates, children may assume that for every 21 white chocolates there are 22 milk chocolates.
- Thinking if the number of red counters to yellow counters changes to 4 red and 6 yellow, the ratio is no longer 2:3.
- Children may think two shapes are similar because they are the same type of shape e.g. both rectangles or both have the same number of sides.
- Children may add scale rather than calculate.
- Thinking that if a shape is enlarged it always gets larger in size, not realising that a shape can be enlarged by a scale factor of $1 / 2$ and therefore get smaller.
- Thinking if shapes are enlarged they can rotate or change position.
- 'Ratio is where we compare two parts of a whole.'
- 'Proportion is a part of the whole.'
- 'A shape is only similar if the sides and angles are in proportion to each other.
- 'For every.......there are.....'
- Part
- Whole
- Fraction
- Representation
- Model
\Rightarrow Scale - a ratio between two sets of measurements.
\Rightarrow Scale factor - a value showing the amount of enlargement.
\Rightarrow Ratio - comparing two parts of a whole.
\Rightarrow Proportion - a part of the whole
\Rightarrow In proportion - related to something else.

Key Objectives
Possible Teaching Sequence

Use simple formulae

\Rightarrow Know what is meant by the term formulae.
\Rightarrow Understand the letters in a formula can be used to represent any given value.
\Rightarrow Substitute given values into the place of the letters in the formula.
\Rightarrow Solve formulas, using knowledge of inverse and balancing- represent problems on a scale or bar model.
\Rightarrow Recognise common formulas such as area and volume, or formulas linked to cooking.

Generate and describe.

\Rightarrow Understand what is meant by term and rule.
\Rightarrow Identify a pattern in a linear sequence and continue pattern forwards \& backwards.
\Rightarrow Identify given steps in a linear sequence and relate to a times table.
\Rightarrow Identify the difference between a times table and the linear sequence.
\Rightarrow Use this to generate a rule for the sequence
\Rightarrow Continue the sequence with the given rule.
\Rightarrow Calculate any given term in a sequence.
Express missing number...
\Rightarrow Understand that a letter can be used to represent any given value.
\Rightarrow Replace a letter with a given value and calculate the answer within an expression
\Rightarrow Collect like terms together e.g. all the a's and represent this with a number followed by the letter to show there are so many lots of this term e.g. $\mathrm{a}+\mathrm{a}+\mathrm{a}+\mathrm{a}$ could be written as 4 a which means 4 xa .
\Rightarrow Use knowledge of collecting terms to make an expression as simple as possible.
\Rightarrow Read a problem and express algebraically as an expression.
\Rightarrow Know that an expression does not have an answer until a value is given for the letter.

Find pairs... Enumerate possibilities...

\Rightarrow Recognise that there can be two unknowns in an equation.
\Rightarrow Represent problem visually with a bar model or scales.
\Rightarrow Know that where there is an expression such as 2 a , there are two equal parts.
\Rightarrow Know that where letters are different, the value of each letter is different.
\Rightarrow Explore using counters and mathematical facts what the possibilities could be.
\Rightarrow Recognise that there could be more than 1 possibility for each value and record all of these systematically.

- Input
- Output
- Factor
- Product
- Multiple
- Express
- Expression
- Equation
- Formula
- Pattern
- Sequence
- Rule
- Represent
- Formulae
- Substitute
- Value
- Algebraic expressions
- Function machine-one-step and two-step.
- Integer
- Simplify
- Values
- Satisfy the equation
- Trial and improvement
- Systematically

COMMON MISCONCEPTIONS

- Children may read and misunderstand a multiplicative number sequence as an additive one that adds a different number each time.
- Children may state that the rule for calculating the number from the term in this sequence is $+3,+6,+9,+12$, etc.
- May think that all patterns have to start at zero.
- Not understanding that term means the position in a sequence.
- May forget to use brackets in their rules so the rule produces a different value.
- Not recognising that 2 y means 2 xy and thinking it means $2+\mathrm{y}$.
- Thinking that expressions such as $4 \mathrm{x}+5$ is the same as 9 x .
- When solving equations such as $36-x=23$, children may solve the incorrect inverse calculation, calculating $23+36$ instead of $36-23$.
- Thinking that the order of function machines doesn't matter in a 2 -step function machine.

Key Definitions

\Rightarrow Expression - a mathematical statement that contains letters, numbers and symbols.
\Rightarrow Equation - a mathematical statement containing an = sign to show 2 expressions are equal
\Rightarrow Formula - a mathematical rule to show the relationship between a calculation and an answer.
\Rightarrow Term - a single number or variable, or numbers and variables multiplied together
\Rightarrow Variable - a symbol for a number not yet known, sometimes a letter.
\Rightarrow Integer - a positive or negative number or zero-not a fraction or decimal fraction.

Key Objectives

- Interpret and construct pie charts and line graphs and use these to solve problems.
- Solve comparison, sum and difference problems using information presented in a line graph.
- Calculate and interpret the mean as an average.
- Complete, read and interpret information in tables, including time tables.

possible Teaching Sequence

Interpret and construct pie charts.

\Rightarrow Understand what is meant by discrete data and that a pie chart can represent this.
\Rightarrow Identify pie charts in a range of interpretations and with a range of values, including decimals.
\Rightarrow Relate a pie chart to a circle, fractions and degrees and to being 100% of a sample.
\Rightarrow Interpret pie charts, being able to ask and answer a range of one step and two step problems
\Rightarrow Record the number in a sample and the total sample as a fraction e.g. if 30 people liked mint, then this is 30 Recognise that $\frac{30}{60}$ is the same as half and use knowledge of fractions to construct parts of a pie chart. $\overline{60}$
\Rightarrow Where a sample cannot easily be related to fractions, then divide 360° by the total sample to determine how many degrees each person in the sample represents.
\Rightarrow Multiply the degrees by the number in each group within a sample.
\Rightarrow Use a protractor to construct the segments of a pie chart, ensuring that the degrees of each segment total 360°.

Construct line graphs..

Flavour	Number
Mint	30
Chocolate	20
Vanilla	10

\Rightarrow Understand what is meant by continuous data and know that line graphs can represent this.
\Rightarrow Identify line graphs in a range of interpretations and with a range of values, including decimals.
\Rightarrow Interpret line graphs, being able to ask and answer a range of one step and two step problems, and make estimates by using a line used to join two points.
\Rightarrow Plot axis, ensuring intervals are equally spaced apart.
\Rightarrow Plot the points from given data
\Rightarrow Join the points using a ruler to create a straight line between each points.
\Rightarrow Interpret the data
\Rightarrow Use line graphs to convert between miles and km.

Calculate and interpret the mean.

\Rightarrow Understand the terms mean and average can be used interchangeably.
\Rightarrow Understand why it can be useful to find the average and establish how this data is used.
\Rightarrow Place all the points on a number line to visually see where the middle of the data may fall.
\Rightarrow Use the formula for calculating the mean: add up all the values in a data set and divide by how many there are \Rightarrow Know when it is appropriate to find the mean.

COMMON MISCONCEPTIONS

- Thinking that the greater the number of groups, the greater the mean.
- Not understanding the link between degrees in a circle and pie charts.
- Not recognising that data can be represented in different ways e.g. on a pie chart or on a bar chart.
- Mistaking the number of segments on a pie chart for the denominator of a fraction e.g.
- Leaving sections of a pie chart blank instead of recognising that all the segments/ fractions together must create a full circle/a whole one.
- Confusing degrees in a circle and percentage. They may think the number of degrees in a circle is 100 because the whole circle is 100%.
- Misinterpreting the scale on a line graph or not recognising that there may be a value in between two scale readings e.g. the scale goes up in 5 s so between 10 and 15 will be $11,12,13,14$

Stem Sentences

- 'To calculate the mean, add up all the values and divide by how many there are.'
- '50 people in a sample of 60 liked chocolate. I can write this as 50

$$
\overline{60 .}
$$

- 'x runs along the bottom, y goes up the side.'
- 'The mean is the tota divided by the number of items.'

Vocabulary

- Interpret
- Represent
- Key
- Scale
- Representation
- Data
- Axis
- Interval
- Data set
- More
- Greatest
- Set
- Segment
- Discrete data
- Continuous data
(See Y5 for definitions)

Q: What fraction of the pie chart preferred summer?
A: $1 / 3$ even though this is clearly incorrect.

Key Definitions

\Rightarrow Line graph - uses lines to join points that represent data.
\Rightarrow Pie Chart - a graph using a divided circle where each segment represents a percentage of the total.
\Rightarrow Mean - the total of all the scores or amounts, divided by, how many scores or amounts there were.
\Rightarrow Average - a measure used to find the middle of a data set.

Problem-solving and reasoning should be applied throughout all teaching not just within isolated lessons.

Problem Solving and Reasoning
The following strategies are a very powerful way of developing pupils' problem-solving and reasoning skills and can be used flexibly across all strands of maths.

- Spot the mistake/Which is different?
- True or false?

What comes next?

- Do, then explain.
- Make up an example/Write more statements/ Create a question/Another and another.
- Possible answers/other possibilities.
- Missing numbers/Missing symbols/Missing information.
- Working backwards/Use of inverse/Undoing/ Unpicking.
- Hard and easy questions/Order from easiest to hardest.
- What else do you know?/Use a fact.
- Fact families.
- Convince me/Prove it/Generalising/Explain thinking
- Connected calculations.
- Make an estimate/Size of an answer
- Always, sometimes, never.
- Making links/Application.
- Can you find?
- Odd one out.
- Complete/continue the pattern
- Ordering.
- The answer is...
- Visualising
- Answer free zone.
- Justify.

Place Value

Eva has ordered eight 6-digit numbers.
The smallest number is 345,900
The greatest number is 347,000
All the other numbers have a digit total of 20 and have no repeating digits.

What are the other six numbers?
Can you place all eight numbers in ascending order?

Problem Solving and Reasoning examples for Year 6

