Year 5

Maths Curriculum

KNOW IT!
TEACH IT!
APPLY IT!

PLACE VALUE

Roman Numerals to 1000.

Roman Numerals 1-100.

Know the value of each digit in a 7-digit number.

Know the value of each digit in 4-digit numbers.

Count forwards/backwards in steps of powers of 10 for any given number up to $1,000,000$.

Count forwards and backwards crossing zero.
Count in multiples of $7,9,25$ and 1000.
Find 1000 more or less.
Count backwards through 0 to include
negative numbers.

New Learning

Year 5

FRACTIONS, DECIMALS \& PERCENTAGES
$0.1=1 / 10=10 \%$
$0.01=1 / 100=1 \%$
$0.5=50 / 100=50 \%$
$0.25={ }^{25} / 100=25 \%$
$0.2=1 / 5=20 \%$
$0.4=2 / 5=40 \%$, etc

Recognise the per cent symbol (\%) means number of parts per 100.
$1 / 10=0.1,1 / 100=0.01,1 / 4=0.25$,
$1 / 2=0.5, \quad 3 / 4=0.75 \quad 100 / 100=1$ whole

Count in thousandths forwards and backwards.

Count in hundredths forwards and backwards.

New Learning	Prior Learning		Δ	$\sqrt{\text { E }} \sqrt{\text { A }} \sqrt{\text { R }} \sqrt{5}$
Key Objectives		Possible Teaching Sequence	Stem Sentences	Vocabulary
- Read, write, order and compare numbers to at least $1,000,000$ and determine the value of each digit.		Read, write, order and compare... \Rightarrow Know the value of $\mathrm{TTh}, \mathrm{HTh}$ and M . \Rightarrow Read and write up to 7 -digit numbers and estimate their position on number lines including blank ones. \Rightarrow Partition into different combinations e.g. 1, 256,000 is equal to 12 HTh and 56 thousands. $\Rightarrow \text { Use }<,>,=\text { signs. }$	- 'There are ten thousands in a ten thousand.' - 'There are ten, ten thousands in a hundred thousand.' - 'There are ten hundred thousands in a million.'	- Represent - Representation - Value - Sequence - Identify - Estimate/Approximate - Ten thousands (see
- Read, write, order and compare numbers beyond 1000. - Recognise the place value of each digit in a 4-digit number.				
- Count forwards or backwards in steps of power of 10 for any given number up to $1,000,000$.		\Rightarrow Order a given set of numbers-could include Roman numerals in a list. Count forwards and backwards... \Rightarrow Recognise powers of 10 and associate with place value columns.	- ' $4,321,000$ is $\underline{4}$ millions and 321 thousands; $4,321,000$ is $\underline{43}$ hundred	STEM sentence) - Hundred thousands - Millions
- Count in multiple - Find 1000 more/	of $6,7,9,25 \& 1000$. ss than a given number.	\Rightarrow Count in steps of powers of 10 from a multiple of 10 ; count from any given multiple. \Rightarrow Bridge TTh, HTh and M .	thousands and $\underline{21}$ thousands etc.' - 'When rounding to the nearest \qquad , the \qquad digit is the digit to consider. If the digit is 4 or less, round down. If it is 5 or more then round up.'	- Roman Numerals - Digit - Partition - Inequality symbol - Ascending - Descending
- Round any numb 100, 1000, 10,00	up to $1,000,000$ to the nearest 10 , nd 100,000.	$\begin{aligned} & \Rightarrow \text { Identify the digit within the number we are rounding to. } \\ & \Rightarrow \text { Recognise the position of the number in relation to the power of } 10 \text { either side and } \end{aligned}$		
- Round any num	r to the nearest 10,100 or 1000.	\Rightarrow Determine which multiple the number is closest to and round to the given multiple.		
- Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero.		\Rightarrow Spot patterns and apply when rounding e.g. 4 or below, round down. Interpret negative numbers... \Rightarrow Understand the concept of zero and the concept of negative numbers in context e.g. temperature, money overdrafts etc.		
- Count backwards through 0 to include negative numbers.		\Rightarrow Count backwards/forwards crossing zero in different steps e.g. 1, 5, 10, 100 etc. \Rightarrow Use the negative sign and terminology e.g. negative 4 not minus 4.		
- Read Roman numerals to 1000 (M) and recognise years written in Roman numerals.		\Rightarrow Estimate where negative numbers come on a number line. Read Roman numerals... \Rightarrow Introduce Roman numerals M and D .		
- Read Roman numerals to 100 (I to C).		\Rightarrow Know the rules of reading Roman numerals. \Rightarrow Apply to the reading and writing of years.		
Common Misconceptions			y Definitions	
- Saying digits instead of reading a number e.g. reading 56,078 as $5,6,0,7,8$ rather than 56 thousands and seventy eight. - Reading thousands digits as a hundreds number e.g. in $2,432,107$ ' 432 ' saying 432 rather than 432 thousands. - Dropping the digits prior to the value you are rounding e.g. round 123,456 to the nearest 1000 , pupil gives answer of 3000 . - Looking at the wrong column when rounding e.g. looking at 10,000 column when rounding to the nearest 10,000 .			\Rightarrow Round - giving a number a nearby value when you don't need it to be exact. \Rightarrow Negative number - any number less than zero written with a negative sign. \Rightarrow Positive number - any number greater than zero. \Rightarrow Multiple - product of one number multiplied by another number. \Rightarrow Power of 10 - ten multiplied by itself a certain number of times.	

- Add and subtract numbers mentally with increasingly large numbers.
- Add, subtract numbers mentally including:
\Rightarrow 4-digit number and ones;
$\Rightarrow 4$-digit number and tens;
\Rightarrow 4-digit number and hundreds.
- Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- Add and subtract numbers with up to 4 digits using formal written methods of columnar addition and subtraction.
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Add and subtract mentally including...

\Rightarrow Count forwards and backwards in ones, tens, thousands, tens of thousands and hundreds of thousands.
\Rightarrow Know the place value of numbers up to 1 million
\Rightarrow Use place value to add and subtract multiples of $10,100,1,000,10,000$, 100,000 and 1 without bridging. Moving onto including bridging.
\Rightarrow Use knowledge of number bonds to help to bridge.
\Rightarrow Use rounding and adjusting to add numbers close to multiples of 10.
\Rightarrow Use visual aids such as number lines and jottings to help keep track of calculations.
Add and subtract numbers with more than 4 digits..
\Rightarrow Read and write numbers up to 1 million
\Rightarrow Use knowledge of place value to line the numbers accurately (up to 1 million).
\Rightarrow Use a range of manipulatives to demonstrate understanding, including pictorial representations
\Rightarrow Add/subtract numbers up to 6 digits with no regrouping/exchanging.
\Rightarrow Add/subtract numbers up to 6 digits with one regroup/ exchange
\Rightarrow Add/subtract numbers up to 6 digits with more than one exchange.
\Rightarrow Know '0' as a place holder.
For above addition \& subtraction also refer to Calculation Policy.
Use rounding to check...See Place Value for Rounding Guidance.
\Rightarrow Round to the nearest $10,100,1000,10,000$, and 100,000.
\Rightarrow Use knowledge of rounding to estimate and give approximate answers.

- 'I know that 6 hundreds + 7 hundreds = 13 hundreds/ 1300 so I know that 6 thousands +7 thousands $=13$ thousands/13,000.'
- 'I know that 13-6 = 7 so I know that 130 $-60=70$ and $1300-600=700$.
- 'For calculations that involve both + and - steps, we can + then - or - then +; the final answer is the same.
- 'In column addition/subtraction, we start at the right hand side.'
- 'If the column sum is equal to 10 or more then we must regroup.'
- 'Subtraction cannot be done in any order.'
- 'When using column subtraction, if the digit on the top is lower in value than that of the digit on the bottom then exchange.'

- Mental

- Efficient
- Calculate
- Calculation
- Partition
- Add
- Addition
- Sum
- Total
- Plus
- Altogether
- Subtract
- Difference
- Fewer

Less

- Takeaway
- Minus
- More
- Combined
- Column
- Row
- Exchange
- Regroup

COMMON MISCONCEPTIONS

Key Definitions

- Children may be unsure which number to place on top of the calculation and why this matters. For example: 3,454 - 3,212. Some children may place the smallest number on top and therefore complete the calculation incorrectly.
- Failing to understand place value in a calculation (see figure 1).
- Inaccurate application of number bonds when calculating mentally e.g. 4000-570=3530
- Using formal written methods for every calculation rather than choosing the most efficient method

Figure 1
\Rightarrow Approximate - an estimation of an answer or rounding a number to its nearest place value.
\Rightarrow Commutative law - In addition and multiplication, numbers can be added or multiplied in any order.
\Rightarrow Multi-step - mathematical problems that require more than one operation.
\Rightarrow Equation - a mathematical statement containing an = sign to show 2 expressions are equal.
\Rightarrow Expression - a mathematical statement that contains letters, numbers and symbols.

Key Objectives

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers
- Recognise and use factor pairs and commutativity in mental calculations e.g. $7 \times 6=7 \times 3 \times 2$.
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Establish whether a number up to 100 is prime and recall prime numbers up to 19 .
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers.
- Use the distributive law to multiply 2 digit numbers by 1 digit
- Multiply two digit and 3 digit numbers by a one digit number using formal written methods. (See Calculation Policy).
- Multiply and divide numbers mentally, drawing upon known facts
- Recall multiplication and division facts from multiplication tables up to 12×12.
- Use place value, known and derived facts to multiply and divide mentally including, multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers.
- Divide numbers up to 4 digits by a one-digit number using the forma written method of short division and interpret remainders appropriately for the context.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1,000 .
- Recognise and use square numbers and cube numbers, and the notation for squared $\left(^{2}\right.$) and cubed (${ }^{(3)}$.

COMMON MISCONCEPTIONS

- Just adding a zero when multiplying by powers of 10. Making reference to decimal numbers where this 'cheat' does not work, i.e. $0.7 \times 10=7$ not 0.70 .
- Not using a 'place holder' when multiplying by a 2-digit number
- Confusing a multiple and a factor
- When finding the product of a squared number (${ }^{2}$), children may ' x ' the number by 2 and not by itself.
- When finding the product of a cubed number (${ }^{3}$), children may ' x ' the number by 3 and not by itself and itself again.

Possible Teaching Sequence

Identify multiples and factors.

\Rightarrow Continue to embed rapid recall of times tables and related division facts.
\Rightarrow Use the vocabulary factor, multiple and product and identify all the factors of a given number e.g. the factors of 20 are $1,2,4,5,10$ and 20
\Rightarrow Identify factors systematically so that none are missed out
Know and use the vocabulary of prime numbers.... Establish whether a...
\Rightarrow Recognise that numbers with only 2 factors are prime numbers \& apply knowledge of multiples and divisibility tests to identify prime numbers less than 100.
\Rightarrow Understand that 73 children can only be organised as 1 group of 73 or 73 groups of 1 because 73 is prime, whereas 44 children could be organised as 1 group of 44,2 groups of 22,4 groups of 11,11 groups of 4 etc.
\Rightarrow Explore the pattern of primes on a 100 -square, explaining why there will never be a prime number in the tenth column and the fourth column.

Multiply numbers up to 4 -digits..

\Rightarrow Develop and refine written methods for multiplication. Moving from expanded layouts (such as the grid method) towards a compact layout for HTO $\times \mathrm{O}$ and TO \times TO calculations.
\Rightarrow Approximate the answer before starting a calculation and use this to check the answer sounds sensible e.g. 56×27 is approximately $60 \times 30=1800$.

Multiply and divide numbers mentally...

\Rightarrow Rehearse multiplication facts and use these to derive division facts, in order to find factors of two-digit numbers and to multiply multiples of 10 and 100 e.g. 40 $\times 50$
\Rightarrow Use factors to work out a calculation such as 16×6 by thinking of it as $16 \times 2 \times$ 3.
\Rightarrow Use strategies such as round and adjust e.g. 39×20 calculate 40×20 then subtract 20 and doubling and halving e.g. $3.5 \times 12=7 \times 6$

Divide numbers up to 4 digits by.

\Rightarrow Extend written methods for division to include $\mathrm{HTO} \div \mathrm{O}$, including calculations with remainders. Increase efficiency of methods used: see calculation policy
Recognise and use square and cube numbers.
\Rightarrow Use knowledge of multiplication facts to derive quickly squares of numbers to 12×12 and the corresponding squares of multiples of 10

Stem Sentences

- 'For every group of 10 , there are 2 groups of five.'
- 'If I double one factor, I must halve the other factor for the product to stay the same.
- 'If I multiply one factor by two, I must halve the other factor for the product to stay the same.'
- 'If I multiply the dividend by _, I mus multiply the divisor by __ for the quotient to stay the same.'
- 'If I divide the dividend by $2, I$ must divide the divisor by 2 for the quotien to stay the same.'
- ' 1 is a factor of all positive integers.'
- 'Every positive integer is a factor of itself.
- 'The smallest factor of a positive number is always $1 .{ }^{\prime}$
- 'The largest factor of a positive intege is always itself.'
- 'Numbers that have more than two factors are composite numbers.'
- 'If you change the order of factors, the product always remains the same.
- 'When a number is divided by 10 , the digits move one place to the right.'
- 'When a number is multiplied by 10 ,

PATTERNS

- Please refer to the Y3 and Y4 curriculum for multiplication patterns.
the digits move one place to the left.'

Key Definitions

\Rightarrow Product - the result when two numbers are multiplied together
\Rightarrow Multiple - the product of one number multiplied by another.
\Rightarrow Factor - a whole number that divides exactly into another number
\Rightarrow Prime number - a number divisible by only 2 factors: 1 and itself
\Rightarrow Composite number - has factors in addition to 1 and itself.
\Rightarrow The number that is divided is called the dividend and the number which the dividend is being divided by is the divisor. The answer to a division problem is the quotient.
\Rightarrow Integer - a whole number.
\Rightarrow Squared number $\left.{ }^{(2}\right)$ - the product of a number multiplied by itself. \Rightarrow Cubed number ${ }^{3}$) - the product of the same number multiplied by itself, then multiplied by itself again.

Key Obiectives

- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.
- Compare and order fractions whose denominators are all multiples of the same number.
- Recognise and show, using diagrams, families of equivalent fractions.
- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number.
- Add and subtract fractions with the same denominator and denominators that are multiples of the same number.
- Add and subtract fractions with the same denominator beyond one whole.
- Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.
- Read and write decimal numbers as fractions.
- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.
- Recognise and write decimal equivalents for tenths, hundredths, $1 / 4,1 / 2,3 / 4$.
- Recognise and write decimal equivalents of any number of tenths or hundredths.
- Count up and down in hundredths recognising that hundredths arise when dividing an object by a hundred and dividing tenths by tens.
- Read, write, order and compare numbers with up to 3 decimal places.
- Compare and order numbers with the same number of decimal places up to two decimal places.
- Round decimals with 2 decimal places to the nearest whole number and to 1 decimal place.
- Round decimals with one decimal place to the nearest whole.
- Recognise the percent symbol and understand that percent relates to number of parts 100 and write percentages as a fraction (with denominator 100) and as a decimal.
- Find the effect of dividing a 1 or 2 digit number by 10 and 100 , identifying the value of the digit in the answer as ones, tenths and hundredths.
- Know percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 and 25 .
- Calculate quantities involving fractions and use fractions to divide quantities including non-unit fractions where the answer is a whole number.

Possible Teaching Sequence

Identify, name... Compare and order.

\Rightarrow Explore visual representations of equivalent fractions, linking to common factors and multiples.
\Rightarrow Apply knowledge of equivalent fractions to ensure a given set of values all have the same denominator.
\Rightarrow Compare and order fractions in ascending and descending order, and using <, > and = signs.
\Rightarrow Count up and down in fraction steps, including mixed numbers e.g. 1, 1½, 2 212.

Recognise mixed...

\Rightarrow Building on prior learning that equivalent numerators and denominators equal a whole, recognise proper and improper fractions.
\Rightarrow Use bar models to show how many parts are in an improper fraction/mixed number and use to convert between two, recording as mathematical statements.

Add and subtract..

\Rightarrow Use equivalence to convert denominators to the same multiple
\Rightarrow Recognise we subtract/add parts (numerator) that we have, writing answer as a mixed number.

Multiply proper fractions.

\Rightarrow Recognise a multiplication sentence as repeated addition and represent this visually, counting the number of parts that result.
\Rightarrow Extend this to mixed numbers, multiplying wholes and parts separately. Read and write decimals...Recognise and use thousandths...
\Rightarrow Recognise a decimal as a fraction of a whole.
\Rightarrow Recognise value of t, h, th in relation to diving a whole by $10,100,1000$. \Rightarrow Link knowledge of fractions to decimals e.g. $23 \div 1000=23 / 100=0.023$. Read, write, order...
\Rightarrow Recognise the value of t, h, th in relation to a whole through use of visual representations and apply knowledge when comparing.
\Rightarrow Recognise what 2 or 3 decimal places means.

Round decimals.

\Rightarrow Recognise which whole or tenth are either side of the decimal being rounded and place the decimal in relation to those on a number line, recognising which value it is closest to.

Recognise percent...Know percentage..

\Rightarrow Know and understand \% symbol, linking to place value knowledge of decima tenths, hundredths and fraction out of 100.
\Rightarrow Use knowledge to convert between fractions, decimals and percentages.
\Rightarrow Use equivalence to convert common fractions to out of 100 and changes Use equivalence to convert commos.
these to decimals and percentages.

COMMON MISCONCEPTIONS

- Not fully understanding that a whole can be made up of parts, such as in the context of mixed numbers.
- Only converting denominators and not numerators or vice-versa
- Adding/subtracting the denominators e.g. $3 / 4+5 / 8=8 / 12$
- Multiplying both numerator and denominator by a whole e.g. $1 / 2 \times 3=3 / 6$
- Reading a decimal as zero point three hundred and 24 instead of zero point three two four.
- Thinking a thousandth is greater than a tenth e.g. $0.1<0.009$.

Stem Sentences

- 'When adding/subtracting fractions, check that the denominators are the same, then add/subtract the parts.'
- 'To find an equivalent fraction, you must multiply/divide both the numerator and denominator in the same way.'
- 'When comparing fractions with the same denominators the greater the numerator, the greater the fraction.'
- 'If numerators are the same, the greater the denominator, the smaller the fraction.'
- 'I know that/1000 is the same as $\div 1000$.'
- '1 whole is a thousand, thousandths.

- Fraction

- Tenths
- Hundredths
- Thousandths
- Equal
- Part
- Equivalent
- Whole
- Factors
- Multiples
- Decimal point
- Improper fraction
- Decimal
- Numerator
- Denominator
\qquad

Key Objectives

- Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre).
- Convert between different units of measure e.g. km to m/ hours to minutes
- Estimate, compare and calculate different measures including money in pounds and pence.
- Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.
- Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres.
- Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m 2) and estimate the area of irregular shapes.
- Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m .
- Find the area of rectilinear shapes by counting squares.
- Estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water]
- Solve problems involving converting between units of time.
- Read, write and convert time between analogue and digital 12and 24-hour clocks.

Possible Teaching Sequence

Convert between different units of measure...

\Rightarrow Throughout use practical equipment and take measurements themselves. \Rightarrow Identify what kilo means
\Rightarrow Convert from km to m and kg to g and vice versa. Use dividing and x by 1000.
\Rightarrow Convert fractions of km to m .
\Rightarrow Use bar models and double number lines to visualise conversions
\Rightarrow Compare m with km etc.
\Rightarrow Milli means 1000. Repeat above for mm to m and ml to I and vice versa.
\Rightarrow Repeat for cm and m .
Understand and use approximate equivalences between metric..
\Rightarrow Physically use the measurements in the classroom alongside metric units.
\Rightarrow Use given stem sentences to compare measurements given in different units
\Rightarrow Use bar models to help with conversions.

Measure and calculate the perimeter

\Rightarrow Measure the perimeter of rectangles and rectilinear (compound) shapes using a ruler accurately.
\Rightarrow Encourage marking off of sides as they are added up to prevent repetition of counting or omission of sides.
\Rightarrow Consider alternative methods when dealing with rectangles e.g. I $+\mathrm{w}+\mathrm{I}+\mathrm{w}$ or $(I+w) \times 2$
\Rightarrow Use perimeter and labelled sides to work out unknown lengths
Calculate and compare the area of rectangles..
\Rightarrow Recap counting squares to find the area and know that area is the amount of space a shape covers and that it is measured in squared units (cm^{2} and m^{2}).
\Rightarrow Find area of irregular shapes by counting squares - identify whole and par squares; find 2 parts that can make an approximate whole.
\Rightarrow Use a formula to calculate the area: area = I x w.
\Rightarrow Estimate the areas of rectangles then calculate and compare / order.
\Rightarrow Investigate: is a square a rectangle? How should we calculate its area?
\Rightarrow Investigate: can we use Area = I x w for any shape?
\Rightarrow Calculate the area of compound shapes - split into 2 separate rectangles
\Rightarrow Split compound shapes in different ways and calculate the areas
\Rightarrow Find the area of a compound shape by making it a complete rectangle and use subtraction of the area of the added piece

stimate volume and capacity..

\Rightarrow Understand that volume is the amount of solid space something takes up.
\Rightarrow Use cm cubes to make solid shapes \& relate to the units for volume - $\mathrm{cm}^{3 .}$
\Rightarrow Make different shapes with the same volume and discuss how the volume is the same / still takes up the same amount of space.
\Rightarrow Compare and order different solids that are made of cubes.
\Rightarrow Begin to calculate volume without counting cubes.
\Rightarrow Identify how volume and capacity differ.
\Rightarrow Estimate, measure and compare both volumes and capacities.
\Rightarrow Explore how containers can be different shapes but still hold the same capacity.

STEM SENTENCES

-'To convert km to m / kg to g / l to ml multiply by 1000.

- 'To convert m to km / g to $\mathrm{kg} / \mathrm{ml}$ to l divide by 1000.
- 'To convert cm to m divide by 100 .'
- 'To convert m to cm multiply by 100. .
- ' 1 inch is approximately 2.5 cm .
- ' 1 kg is approximately 2 pounds.'
- ' 1 pint is approximately $1 / 2$ a litre.'
- 'Perimeter is the distance around the outside of a 2D shape.'
- 'Area is the amount of space a shape covers and is measured in squared units.
- 'Capacity is the amount a container or object can hold.'
- Mass
- Weight
- Scale
- Length
- Volume
- Capacity
- Perimeter
- Increments/divisions a.m. - p.m.

Distance

- Area
- Analogue • Digital Standard units . Non standard units
- Regular/irregula
- Rectilinear/compound shapes
- Approximate
- Inches, pints, pounds
- 'Volume is the amount of solid space occupied by an object.'

COMMON MISCONCEPTIONS

- Not knowing the difference between perimeter and area.
- Not knowing the difference between volume and capacity
- Thinking that $100 \mathrm{~g}=1 \mathrm{~kg}$ and $100 \mathrm{~m}=1 \mathrm{~km}$ or $1000 \mathrm{~cm}=1 \mathrm{~m}$.
- Difficulties converting between minutes and hours e.g. 0.75 hours $=75$ minutes
- Believing time is a decimal and using the column method to calculate differences in time.

Key Definitions

\Rightarrow Capacity - the amount a container or object can hold, (measured in ml / l)
\Rightarrow Volume - amount of solid space occupied by an object (measured in cm^{3}).
\Rightarrow Perimeter - the distance around the outside of a 2D shape
\Rightarrow Area - the amount of space a shape covers
\Rightarrow Rectilinear - a shape where all sides meet at right angles.
\Rightarrow Formula - a mathematical rule to show the relationship between a calculation and an answer.

Key Objectives

possible Teaching Sequence

Stem Sentences

Vocabulary

- Identify 3D shapes, including cubes and cuboids from 2D representations.
- Use the properties of rectangles to deduce related facts and find missing lengths and angles.
- Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.
- Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.
- Complete a simple symmetrical figure with respect to a specific line of symmetry.
- Identify lines of symmetry in 2D shapes, presented in different orientations.
- Know that angles are measured in degrees: estimate and compare acute obtuse and reflex angles.
- Draw given angles and measure them in degrees.
- Identify:

$$
\begin{aligned}
& \Rightarrow \text { angles at a point and one whole turn }-360^{\circ} ; \\
& \Rightarrow \text { angles at a point on a straight line and } 1 / 2 \text { a turn; } \\
& \Rightarrow \text { other multiples of } 90^{\circ} .
\end{aligned}
$$

- Identify acute and obtuse angles and compare and order angles up to two right angles by size.
- Identify, describe and represent the position of a shape following a reflection or translation using the appropriate language and know that the shape has not changed.
- Describe positions on a 2D grid as coordinates in the first quadrant.
- Plot specified points and draw sides to complete a given polygon.
- Describe movements between positions as translations of a given unit to the left/right and up/down.

Identify 3D shapes...

\Rightarrow Know terminology associated with 3D shapes e.g. faces, edges, vertices, base and parallel faces.
\Rightarrow Identify how 3D shapes are constructed from faces consisting of 2D shapes.
\Rightarrow Recognise specific features of 3D shapes from different representations, including 2D images.
Use the properties..

Children should use the idea that they can form another square within the rectangle to determine that angle ? is $1 / 2$ a right angle and use ideas such as, parallel sides in rectangles are equal lengths to determine the length of the missing side.

Know angles... Draw given angles...

\Rightarrow Building on acute and obtuse angles (Y4) identify angles that are greater than 180° and associate with terminology.
\Rightarrow Recognise angles within a range of representations e.g. irregular shapes and state whether they are acute, obtuse or reflex.
\Rightarrow Know angles are measured in degrees and how to use a protractor.
\Rightarrow Estimate the size of and measure angles, including reflex, in a range of representations using angle knowledge to justify their answers.

Identify angles...

\Rightarrow Building on knowledge from Y 3 of turns and right angles, recognise a quarter turn as 90°, a $1 / 2$ turn as 180° (straight line), a $3 / 4$ turn as 270° and a full turn as 360°
Identify, describe and represent...
\Rightarrow Know that the concept of translate is to move.
\Rightarrow Calculate how many units a vertex has been translated by.
\Rightarrow Translate each vertex and join to complete a shape.
\Rightarrow Building on Y 4 , reflect shapes within 1 quadrant and write the new coordinates.

Common Misconceptions

- Counting squares not jumps when translating
- Translating, instead of flipping a shape around a mirror line.
- Not counting hidden vertices, faces and edges on a 2D representation of a 3D shape.
- Reading the wrong scale when measuring angles.
- Measuring acute angle instead of reflex e.g.

- Not recognising reflex angles within irregular shapes e.g.

Key Definitions

\Rightarrow Prism - a 3D shape with two parallel faces that are the same 2D shape. All the other faces are rectangles
\Rightarrow Pyramid - a 3D shape with triangular sides that meet at a point. The base is a 2D shape.
\Rightarrow Regular - a shape with all sides and angles equal.
\Rightarrow Irregular - a shape where sides and angles are different sizes and lengths.

Key Objectives

- Solve comparison, sum and difference problems using information presented in a line graph.
- Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
- Interpret and present discrete and continuous data using appropriate graphical methods including bar charts and time graphs.
- Complete, read and interpret information in tables, including timetables.

Possible Teaching Sequence

Solve comparison, sum and difference problems...

\Rightarrow Reading between intervals, giving an estimate of the value that is represented.
\Rightarrow Use a ruler to support reading of axes.
\Rightarrow Writing a story to explain what is happening in a line graph.
\Rightarrow Draw axis with different scales, understanding which multiples are most appropriate for labelling intervals on axes and impact on accuracy.
\Rightarrow Collect own data to represent in line graphs. Links to science e.g. measuring shadows over time, melting and dissolving substances or plant growth.
\Rightarrow Solving comparison, sum and difference problems.
\Rightarrow Determine highest and lowest values.
\Rightarrow Calculate differences between highest and lowest values .
\Rightarrow Calculate length of time taken for a certain event.
\Rightarrow Generate own questions.

Complete, read and interpret information in tables...
\Rightarrow Interpret discrete data from a table.
\Rightarrow Collect, present and interpret own information.
\Rightarrow Read and interpret two way tables
\Rightarrow Complete missing information on a two way table.
\Rightarrow Extract information from a timetable.

Stem Sentences

- 'What does the x axis represent? The x axis represents...
- 'What does the y axis represent? The y axis represents...'
- 'X runs along the bottom, y goes up the side.'

Vocabulary

- Interpret
- Represent
- Scale
- Data
- Intervals
- Table
- Timetable
- Interval
- Axis
- Multiples
- Constant rate
- Two way table

COMMON MISCONCEPTIONS

- Mixing up the x and y axis.

- Uneven intervals when drawing their own graphs.
- Plotting information on the graph incorrectly.
- Believing that the larger durations of time on a timetable equate to the fastest.
- When reading two-way tables, pupils might just look at either the row or column but not both
- When solving questions on a two-way table about bus/train times they may use column subtraction/addition to get a time instead of a number line.

Key Definitions

\Rightarrow Interval - between 2 points or values.
\Rightarrow Scale - a series of marks equally spaced apart on an axis.
\Rightarrow Discrete - data that has a finite value and does not change e.g. the number of people in each group in a completed survey.
\Rightarrow Continuous - data that is continually changing as it is measured over time e.g. the temperature over a year.
\Rightarrow Line graph - uses lines to join points that represent data.

PROBLEM-SOLVING AND REASONING SHOULD BE APPLIED THROUGHOUT ALL TEACHING NOT JUST WITHIN ISOLATED LESSONS.

Problem Solving and Reasoning
The following strategies are a very powerful way of developing pupils' problem-solving and reasoning skills and can be used flexibly across all strands of maths.

- Spot the mistake/Which is different?
- True or false?
- What comes next?
- Do, then explain.
- Make up an example/Write more statements/Create a question/Another and another.
- Possible answers/other possibilities.
- Missing numbers/Missing symbols/Missing information.
- Working backwards/Use of inverse/Undoing/Unpicking.
- Hard and easy questions/Order from easiest to hardest.
- What else do you know?/Use a fact.
- Fact families.
- Convince me/Prove it/Generalising/Explain thinking
- Connected calculations.
- Make an estimate/Size of an answer.
- Always, sometimes, never.
- Making links/Application.
- Can you find?
- Odd one out.
- Complete/continue the pattern.
- Ordering.
- The answer is...
- Visualising
- Answer free zone.
- Justify.

Problem Solving and Reasoning Examples for Year 5

