Year 4

Maths Curriculum

KNOW IT!
TEACH IT!
APPLY IT!

Key Objectives		Possible Teaching Sequenc
- Count in multiples of 6, 7, 9, 25 \& 1000.		Count from 0 in multiples of 6, 7, 9, 25 and 1
- Count from 0 in multiples of 4, 8, 50 and 100.		
- Find 1000 more/less than a given number.		\Rightarrow Count in steps of steps of 25 and relate to steps of 50,100 and $1 / 4$ s. \Rightarrow Count in steps of 1000 , linking to 10 and 100.
- Find 10/100 more/less than any given number.		\Rightarrow Make links with odd and even numbers. Find 1000 more/less
- Recognise the place value of each digit in a 4 -digit number.		$\begin{aligned} & \Rightarrow \text { Bridge } 1000 \text {. } \\ & \Rightarrow \text { Count in } 1000 \text { s from any given multiple of } 1000 \text {, then any given number. } \\ & \text { Read, write, order and compare beyond } 1000 \text {. } \end{aligned}$
- Recognise the place value of each digit in a 3 -digit number.		\Rightarrow Know the place value of 4-digit numbers. \Rightarrow Read and write numbers beyond 1000.
- Read, write, order and compare numbers beyond 1000.		\Rightarrow Order a set of numbers from largest to smallest; smallest to largest. \Rightarrow Use $<,>$ and $=$ signs. Identify, represent and estimate numbers using different representations.
- Read, write, order and compare numbers to 1000.		\Rightarrow Know the place value of 4 -digit numbers. \Rightarrow Partition 4-digit numbers (thousands, hundreds, tens and ones).
- Identify, represent and estimate numbers using different representations. For example, estimate weight, identify temperature etc. - Count backwards through 0 to include negative numbers. - Round any number to the nearest 10,100 or 1000. - Read Roman numerals to 100 (I to C).		\Rightarrow Partition in different combinations e.g. $5324=53$ hundreds and 24 ones. \Rightarrow Read and write numbers up to 1000. Count backwards through zero.
		\Rightarrow Understand zero and the concept of negative numbers. \Rightarrow Count backwards in steps of one.
		\Rightarrow Count backwards in steps of one. \Rightarrow Use the negative sign and terminology e.g. negative 4 not minus 4. Round any numbers to the nearest 10,100 or 1000 \Rightarrow Recognise position of the number relative to multiples of $10 / 100 / 1000$
		either side and place on a number line. \Rightarrow Determine which multiple the number is closet to \& round to given multiple. \Rightarrow Spot patterns and apply when rounding e.g. 4 or below then round down. Read Roman numerals
		\Rightarrow Know history of Roman numerals, know what I, V, X, L, C stand for, know the rules of applying Roman numerals.

COMMON MISCONCEPTIONS

- Not knowing to use 0 as a place holder when a column is empty.
- Not knowing the value of a digit e.g. 'the 3 in 3421 is worth 3 .' instead of 'the 3 in 3421 is worth 3000 .'
- Misunderstanding the value of negative numbers e.g. -5 is more than -1 .
- Not recognising the position of Roman numerals correctly e.g. "C X C, means 210 , the X means 10 ." Actually means -10 .
- Looking at the wrong column when rounding e.g. looking at the hundreds column when rounding to the nearest 100
- Missing out 0 when counting forwards/backwards.

Stem Sentences

- 'There are ten hundreds in one thousand'
- 'There are one hundred tens in one thousand.'
- 'There are one thousand ones in one thousand.'
- '5342 is 5342 ones.'
- '5342 is $\underline{5}$ thousands and 342 ones.'
- '5342 is $\underline{53}$ hundreds and 42 ones.'
- '5342 is 534 tens and $\underline{2}$ ones.'
- ' 5342 is $\underline{5}$ thousands, $\underline{3}$ hundreds, $\underline{4}$ tens and 2 ones.'
- 'When rounding to the nearest the \qquad digit is 4 or down. If the \qquad digit is 5 or more then round up.'

Vocabulary

- Represent
- Representation
- Value
- Sequence
- Identify
- Estimate/Approximate
- Thousands (see STEM sentence)
- Roman Numerals
- Digit (see Y3)
- Partition (see Y3)
- Inequality symbol
- Ascending
- Descending
- Numeral
\Rightarrow Round -giving a number a nearby value when you don't need it to be exact.
\Rightarrow Negative number - any number less than zero written with a negative sign.
\Rightarrow Positive number - any number greater than zero.
\Rightarrow Multiple - product of one number multiplied by another number.

Key Objectives Possible Teaching Sequence	Stem Sentences Vocabulary
- Add, subtract numbers mentally including: $\quad \Rightarrow 4$ digit number and ones $\Rightarrow 4$ digit number and tens $\Rightarrow 4$ digit number and hundreds. - As above but with 3 digits as oppose to 4 digits. - Add and subtract numbers with up to 4 digits using formal written methods of columnar addition and subtraction. - Add and subtract numbers with up to 3 digits using formal written methods of columnar addition and subtraction. - Estimate the answer to a calculation and use the inverse operation to check the answer. Add and subtract mentally including... \Rightarrow Count forwards and backwards in ones, tens, hundreds and thousands. \Rightarrow Know the place value of 2, 3 and 4-digit numbers. \Rightarrow Use knowledge of place value to add and subtract multiples of 10, 100, 1000 and 1 without bridging. Add and subtract numbers with up to 4 digits using formal written methods of columnar addition and subtraction. \Rightarrow Know the place value for 2,3 and 4 -digit numbers. \Rightarrow Read and write numbers up to 10,000 . \Rightarrow Recognise 0 as a place holder. \Rightarrow Add two 4-digit numbers with no exchanging. \Rightarrow Add two 4-digit numbers with one exchange. \Rightarrow Add two 4-digit numbers with more than one exchange. \Rightarrow Follow the above addition steps for subtraction also. Also refer to calculation policy	- 'I know that 6 tens +7 tens $=13$ tens $/ 130$ so I know that 6 hundreds +7 hundreds $=13$ hundreds/1300.' - 'I know that 13-6 = 7 so I know that 130 $60=70$ and $1300-600=700 . '$ - 'For calculations that involve both + and steps, we can + then - or - then +; the final answer is the same.' - 'In column addition we start at the right hand side.' - 'If the column sum is equal to 10 or more then we must regroup.' - 'Subtraction cannot be done in any order.' - 'When using column subtraction, if the digit on the top is lower than that of the digit on the bottom then exchange.' - Mental - Efficient - Calculate - Calculation - Partition - Add - Addition - Sum - Total - Plus - Altogether - Subtract - Difference - Fewer - Less - Takeaway - Minus - More - Combined - Column - Row - Exchange - Regroup
COMMON MISCONCEPTIONS Key Definitions	
- Re-ordering a subtraction statement so you always take away from the greater digit instead of exchanging e.g. $\begin{array}{rl} 292 & 2-4 \text { becomes } \\ -\quad 114 & 4-2 . \end{array}$ - Lining up columns incorrectly especially in terms of a 4-digit number subtract a 3-digit number (including decimal numbers). - '1000-570 = 530' inaccurate application of number bonds. - Knowledge of what 3420-1120 actually means e.g. reading 400-100 as 4-1. - Thinking that formal written methods are the only way to + or - rather than choosing the most efficient methods e.g. using a column method for 9000-8999.	```Equation - mathematical statement containing an = sign to show 2 expressions are equal. # Expression - one side of an equation. Inverse - the operation that reverses the effect of another operation e.g. addition and subtraction are inverse operations.```

Key OBJECTIVES

- Recall multiplication and division facts from
multiplication tables up to 12×12.
- Recall and use multiplication and division facts for
3,46 and 8 times tables.

Recall multiplication and division facts...

\Rightarrow Practise by rote.
\Rightarrow Use pictorial representations such as arrays.
\Rightarrow Use known facts such as doubling and halving e.g. $\times 2 \times 4 \times 8$ to link tables such as 2 s and 4 s .
Use place value, known and derived facts/use the distributive...
\Rightarrow Use known facts e.g. $5 \times 10=50$ therefore 5×100 must be 500 and commutativity e.g. 5×7 is equal to 7×5.
\Rightarrow Use derived facts e.g. $6 \times 3=18$ therefore $6 \times 30=180$.
\Rightarrow Use factor pairs and commutativity to multiply 3 numbers e.g. $2 \times 6 \times 5=10 \times 6$.
\Rightarrow Apply knowledge to distributive law e.g. $39 \times 7=30 \times 7+9 \times 7$.

Multiply 2-digit and 3-digit numbers..

\Rightarrow Multiply a one-digit number by a two-digit number- use numbers that are known tables to begin with.
\Rightarrow Multiply a one-digit number by a three-digit number- using known tables.
\Rightarrow Progress to other tables they should know e.g. x 7 .

Solve correspondence problems...

\Rightarrow Recognise different combinations can be made from objects
\Rightarrow Record combinations systematically.
\Rightarrow Use mathematical calculations/number sentences to demonstrate this.

Solve integer scaling problems..

\Rightarrow Use bar modelling as a visual representation to support children's calculations e.g. In a class of 36 there are 3 times as many boys as girls. How many girls are there?

Stem Sentences

'When a number is multiplied by 0 , the answer is always $0 .{ }^{\prime}$

- 'When a number is multiplied by 1 , the number remains the same.'
- 'When a number is divided by 1 , the number remains the same.'
- 'When a number is divided by itself, the answer is always 1.'
- Multiplication
- Division
- Calculate
- Multiply
- Divide
- Mental
- Recall
- Double
- Half
- Efficient
- Derive
- Multiple
- Groups of
- Times
- Repeat
- Left
- Remainder
- Scale
- Bar model
- Systematic
- Solve correspondence problems such as n objects are connected to mobjects.
- Solve integer scaling problems.

COMMON MISCONCEPTIONS

- Writing/saying division statement in the wrong order e.g.

$$
5 \div 45 \text { instead of } 45 \div 5
$$

- Not realising that 3×4 is the same as 4×3.
- When answering scaling problems not recognising the number of parts in the whole e.g. when working out the number of girls in a class of 36 knowing there are 3 times as many boys and then \div by 3 instead of \div by 4 .

Patterns

Please see Y3 curriculum for other x table patterns.

9 times tables

- When multiplying by 9 the tens digit increases as the ones digit decreases.

12 times tables

- Double $6 \times$ table to generate $12 x$ table.

Key Definitions

\Rightarrow Factor - a whole number that divides exactly into another number. \Rightarrow Product - the result when two numbers are multiplied together.
\Rightarrow Multiple - the product of one number multiplied by another.
\Rightarrow Prime number - a number divisible by only 2 factors: 1 and itself.

Key Objectives

- Recognise and show, using diagrams, families of equivalent fractions.
- Recognise and show using diagrams, equivalent fractions with small denominators.
- Compare and order unit fractions and fractions with the same denominators.
- Add and subtract fractions with the same denominator beyond one whole.
- Add and subtract fractions with the same denominator within one whole
- Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$.
- Recognise and write decimal equivalents of any number of tenths or hundredths.
- Find the effect of dividing a 1 or 2 digit number by 10 and 100 , identifying the value of the digit in the answer as ones, tenths and hundredths.
- Recognise, find and write fractions of a discrete set of objects, unit fractions and non-unit fractions with small denominators.
- Recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators.
- Calculate quantities involving fractions and use fractions to divide quantities including non-unit fractions where the answer is a whole number.
- Count up and down in hundredths recognising that hundredths arise when dividing an object by a hundred and dividing tenths by ten.
- Round decimals with one decimal place to the nearest whole.
- Compare and order numbers with the same number of decima places up to two decimal places.

Possible Teaching Sequence

Recognise and show, using diagrams..

\Rightarrow Practical investigations involving folding shapes to demonstrate how two fractions have an equal value
\Rightarrow Recognise how denominators and numerators link through common factors and multiples.
\Rightarrow Begin to use factors and multiples to find equivalent fractions.

Add and subtract fractions...

\Rightarrow Understanding the meaning of the terms numerator and denominator
\Rightarrow Use visual representations to show how many parts of a whole you have in total.
\Rightarrow Show as written calculations extending beyond a whole and recognise as an improper fraction.

Recognise and write decimal.../Find the effect of...

\Rightarrow Know that a decimal point tells us we have a fraction of a whole and that these subsequent columns tell us what fraction of the whole we have
\Rightarrow Recognise the value of t, h, in relation to dividing a whole by 10 and 100.
\Rightarrow Link knowledge of fractions to decimals.
\Rightarrow Extend to the idea that $23 \div 100=23 / 100=0.23$.

Calculate quantities involving..

\Rightarrow Recognise the meaning of the terms numerator and denominator.
\Rightarrow Find one part of the whole and use this to find multiple parts of the whole Round decimals...
\Rightarrow Recognise which whole numbers are either side of the decimal
\Rightarrow Place the decimal on a number line in relation to the wholes and determine which whole is closer.
Compare numbers.
\Rightarrow Visually represent decimals \& use these representations to determine which decimal is larger/smaller.
\Rightarrow Know the numerator will change but the denominator will stay the same

Stem Sentences

- 'As the denominator increases, the parts become smaller.'
- 'When adding fractions, add the parts and keep the denominator the same.'
- 'I know Ko is the same as __ $\div 10$.
- 'When rounding to the nearest whole, if the tenths digit is less than 4, round down If the tenths digit is 5 or above, round up.
- '1 whole is ten tenths or a hundred hundredths.

COMMON MISCONCEPTIONS

- Not understanding that a unit fraction is an equal part of a whole.
- Adding/subtracting the denominator when adding/subtracting fractions-linked to knowledge of numerator/denominator
- When finding fractions, dividing by the numerator and multiplying by the denominator
- Adding/subtracting to find equivalent fractions instead of multiplying/dividing.
- Thinking that a number with more decimal places is greater e.g. 0.03 is greater than 0.3.
- Reading a decimal as zero point twenty four instead of zero point two four.

Key Definitions

\Rightarrow Numerator - how many equal parts of a whole you have.
\Rightarrow Denominator - how many equal parts a whole is divided in to.
\Rightarrow Decimal - a part of a whole number.
\Rightarrow Decimal point - the symbol used to separate whole \& parts.
\Rightarrow Proper fraction - a fraction where the numerator is less than the denominator.
\Rightarrow Improper fraction - a fraction where the numerator is greater than the denominator; a fraction larger than a whole.
\Rightarrow Mixed number - a number made up of a whole number and a fraction.

Key ObJECTIVES

- Convert between different units of measure e.g. km to $\mathrm{m} /$ hours to minutes.
- Measure, compare, add and subtract lengths (m/cm/mm); mass (kg/g); volume/capacity (I/ ml).
- Measure and calculate the perimeter of a Measure and calculate the perimeter of a
rectilinear figure (including squares) in cm and m .
- Find the area of rectilinear shapes by counting squares.
- Measure the perimeter of simple 2D shapes.
- Estimate, compare and calculate different measures including money in pounds and pence.
- Add and subtract amounts of money to give change using both pound and pence in practical contexts.
- Read, write and convert time between analogue and digital; 12 and 24 hour clocks.
- Tell and write the time from an analogue clock including, using Roman numerals 1-12 and 12 hour/24 hour clocks.
- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am, pm, morning, afternoon, noon and midnight.
- Compare durations of events.

possible Teaching Sequence

Convert between different units of measure...
\Rightarrow Convert mm to cm and cm to mm by x and \div by 10 .
\Rightarrow Begin by converting units involving multiples of 10 .
\Rightarrow Progress to other numbers e.g. $73 \mathrm{~mm} \div 10=7.3 \mathrm{~cm}$
\Rightarrow Convert cm to m and m to cm by x and \div by 100 .
\Rightarrow Begin with multiples of 10 and progress to other numbers.
\Rightarrow Convert m to km and km to m by x and \div by 1000 .
\Rightarrow Use place value grids and a range of contexts e.g. capacity /money.
Measure and calculate the perimeter of a rectilinear figure..
\Rightarrow Demonstrate accurate use of ruler or metre stick to measure the sides of the shape (including decimals).
\Rightarrow Calculate perimeter when given the length and width by adding sides together.
\Rightarrow Progress to adding the length and width and multiplying by 2 e.g. $2(1+w)$.
\Rightarrow Calculate the missing lengths and explore possible perimeters of squares and rectangles.
\Rightarrow Begin to calculate the perimeter of rectilinear shapes using addition and subtraction of missing sides.

Find the area of rectilinear shapes..

\Rightarrow Understand that area is the amount of squares taken up by a 2D shape or surface and demonstrate this by shading in/labelling the area of a regular/irregular shape.
\Rightarrow Estimate the area of a shape using non-standard and standard units of measures.
\Rightarrow Begin to measure and compare area by counting squares, progressing to recognising arrays and relating to multiplication facts/squared numbers.
Estimate, compare and calculate...
\Rightarrow Introduce decimal notation for pounds and pence.
\Rightarrow Convert between different units of money e.g. 169p=£1.69.
\Rightarrow Understand how to round different amounts of money for estimating-see decimals guidance for rounding

Read, write and convert time..

\Rightarrow Use a.m. and p.m. to distinguish between morning to midnight and midnight to noon
\Rightarrow Understand that digital time is about the number of minutes to the hour.
\Rightarrow Recognise 24 hour clock in 12 hour format e.g. 09:30 being 9:30 a.m.

Stem Sentences

- 'There are 10 mm in 1 cm .
- 'There are 60 seconds in 1 minute and 60 minutes in 1 hour.'
- 'A leap year occurs every 4 years and has 366 days.'
- 'A.M. is any time in the morning from midnight to noon.'
- 'P.M. is any time after midday from noon to midnight.'
- 'Add 12 hours to a 12 -hour clock p.m. time to get the equivalent 24-hour clock time.'
- 'Perimeter is the distance around the outside of a 2D shape.'
- 'Area is the amount of space a shape covers and is measured in squared units.'

VOCABULARY

- Mass
- Weight
- Scale
- Length
- Volume
- Capacity
- Perimeter
- Roman numerals
- Time
- Noon
- Leap year
- Increments/divisions
- Morning
- Afternoon
- Midnight
- a.m.
- p.m.
- Calendar
- Distance
- Area
- Analogue
- Digital
- Standard units
- Non-standard units

COMMON MISCONCEPTIONS

- Not knowing the difference between perimeter and area, or confusing the time.
- Misunderstanding when comparing different units of measurements e.g. thinking that 55 mm is larger than 7.1 cm .
- Difficulties converting between minutes and hours e.g. thinking that 2 hours is 200 minutes as oppose to 120

KEY DEFINITIONS

\Rightarrow Capacity - the amount a container or object can hold, (measured in ml / l).
\Rightarrow Volume - amount of space occupied by an object (measured in cm^{3}).
\Rightarrow Perimeter - the distance around the outside of a 2D shape.
\Rightarrow Area - the amount of space a shape covers.
\Rightarrow Rectilinear - a shape where all sides meet at right angles.

Key Objectives

Possible Teaching Sequence

Compare and classify...

\Rightarrow Know terminology associated with shapes e.g. vertices, sides etc.
\Rightarrow Recognise general features of both triangles and quadrilaterals in both regular and irregular forms.
\Rightarrow Recognise specific features of different types of quadrilaterals and triangles

Identify acute and obtuse...

\Rightarrow Identify if angles are greater/less than 90° and associate with terminology acute and obtuse.
\Rightarrow Recognise obtuse and acute angles within irregular and regular shapes.
\Rightarrow Place a number of angles in ascending or descending order.

Complete a simple symmetrical..

\Rightarrow Understand the concept of symmetry and spot symmetrical patterns.
\Rightarrow Complete a symmetrical pattern/figure around given lines, in different orientations.

Identify lines of symmetry...

\Rightarrow Identify parts of 2D shapes that are mirror images of each other through physical representations such as folding.
\Rightarrow Draw lines of symmetry on given shapes.
Describe positions on a 2D grid.../plot specified points...
\Rightarrow Know coordinates are used to describe position/location.
\Rightarrow Read/write coordinates and apply knowledge to plot given points (understand concept of x and y).
\Rightarrow Join points to create a polygon, using knowledge of features to justify that they have plotted points correctly.
Describe movements between positions...
\Rightarrow Know the difference between left and right.
\Rightarrow Know the concept of 'translate' is to move.
\Rightarrow Calculate how many units a point has been translated by.
\Rightarrow Translate own points.

Stem Sentences

- 'A right angle is 90°.'
- 'An acute angle is less than 90°.'
- 'An obtuse angle is greater than 90° but less than 180°.'
- 'Parallel lines are lines that never meet and are an equal distance apart.'
- 'Perpendicular lines meet at a right angle.'
- 'When we read coordinates, we read x and then y .

VOCABULARY

- Isosceles
- Equilateral
- Scalene
- Right-angled triangle
- Rhombus
- Parallelogram
- Trapezium
- Quadrilateral
- Right angle
- Vertices
- Sides
- Polygon
- Angle
- Acute
- Obtuse
- Irregular
- Regular
- Plot
- Parallel
- Perpendicular

COMMON MISCONCEPTIONS

Key Definitions

- Not recognising the concept of an angle and mixing up the length of sides with the size of angle.
- Assuming opposite corners mean a line of symmetry e.g. in a rectangle. Not seeing that the angles are different.
- Translating instead of flipping a shape around a mirror line.
- Counting squares not jumps when translating.

\Rightarrow Translate - sliding an object into a new position without flipping or turning.
\Rightarrow Coordinate - a pair of numbers that describes the position of a point on a grid.
\Rightarrow Symmetrical - when one half is a mirror image of the other half.
$\Rightarrow \mathbf{Y}$ axis - the vertical line on a coordinate grid.
$\Rightarrow \mathbf{X}$ axis - the horizontal line on a coordinate grid.

Key Objectives

- Interpret and present discrete and continuous data using appropriate graphical methods including bar charts and time graphs.
- Interpret and present data using bar charts, pictograms and tables.
- Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
- Solve one-step and two-step questions (e.g. how many more?) using information presented in scaled bar charts, pictograms and tables.

Common Misconceptions

- Ignoring key \because then answering $-\infty$ as 3 instead of 6 or $1 / 2$ instead of 1 .
- Not checking/recognising that intervals on an axis must be equally spaced apart.
- Interpreting 'How many more...' as an addition or scale reading exercise, instead of as subtraction.
- Trying to represent discrete data on a line graph and subsequently interpreting incorrectly e.g.

Solve comparison, sum and difference...

\Rightarrow Determine highest \& lowest values from a given set of data, including sections of data e.g. 2 out of 12 months on a line graph
\Rightarrow Total values from a given set of data
\Rightarrow Understand the term 'difference' and apply to questions such as 'how many more...'

Stem Sentences

- 'The symbol in the key represents so half a symbol represents_.'

Vocabulary

- Pictogram
- Interpret
- Symbol
- Represent
- Key
- Scale
- Representation
- Data
- Axis
- Tally
- Venn diagram
- Carroll Diagram
- Bar chart
- Table
- Interval

Key Definitions

\Rightarrow Interval - between 2 points or values.
\Rightarrow Scale - a series of marks equally spaced apart on an axis.
\Rightarrow Discrete - data that has a finite value and does not change e.g the number of people in each group in a completed survey.
\Rightarrow Continuous - data that is continually changing as it is measured over time e.g. the temperature over a year.
\Rightarrow Line graph - uses lines to join points that represent data.

Problem-Solving and reasoning should be Applied throughout all teaching not Just within isolated lessons.

Problem Solving and Reasoning

The following strategies are a very powerful way of developing pupils' problem-solving and reasoning skills and can be used flexibly across all strands of maths.

- Spot the mistake/Which is different?
- True or false?
- What comes next?
- Do, then explain.
- Make up an example/Write more statements/Create a question/Another and another.
- Possible answers/other possibilities.
- Missing numbers/Missing symbols/Missing information.
- Working backwards/Use of inverse/Undoing/ Unpicking.
- Hard and easy questions/Order from easiest to hardest.
- What else do you know?/Use a fact.
- Fact families
- Convince me/Prove it/Generalising/Explain thinking
- Connected calculations.
- Make an estimate/Size of an answer.
- Always, sometimes, never.
- Making links/Application.
- Can you find?
- Odd one out.
- Complete/continue the pattern.
- Ordering.
- The answer is...
- Visualising
- Answer free zone.
- Justify.

Problem Solving and Reasoning Examples for Year 4
Place Value
Fill in the boxes by finding the patterns.

$$
1,8 _0 \div 10=1 _6
$$

$$
6_{-}=6,400 \div 100
$$

Fractions

Tick the two numbers that are equivalent to $\frac{1}{4}$

Statistics
Make up a story that fits the line graph

Multiplication \& Division
Use the digit cards to fill in the missing digits.

1	2	5	5
8	9		

$$
170 \div 10=_-
$$

$$
_20 \times 10=3 _00
$$

$$
-9 \times 100=5,-00
$$

Geometry-Position \& Direction

$$
\boldsymbol{A} \text { to } \boldsymbol{x} 4 \text { right and } 4 \text { down. }
$$

$$
\text { X to } \boldsymbol{\Delta} \text { is left and } 4 \text { up. }
$$

Can you plot ther pairs of points where to nove between them, you travel the same to left or right as you travel up or down?

Measures
An empty box weighs 0.5 kg . Ivy puts 10 toy bricks inside it and the box now weighs 2 kg . How much does each brick weigh?

