Year 2

Maths Curriculum

KNOW IT!
TEACH IT!
APPLY IT!

PLACE VALUE

Count in steps of 2,3 and 5 from 0 and in 10 s from any number forwards and backwards.

Count in multiples of 2,5 and 10.
Know the value of each digit in 2-digit numbers. 10 more or 10 less from any given number.
Kegin to recognise place value in numbers beyond 20.
Know the signs $>,<$ and $=$.

Year 2

Recall number bonds within and to 20 fluently.

Know number bonds within and to 20.

Know 2, 5 and 10 times tables.

Know division facts for 2, 5 \& 10 times tables

Know doubles and halves to 20.

Know doubles and halves to 10.

GEOMETRY

Right angle = quarter turn

Know whole $1 / 2,1 / 4$, and $3 / 4$ turns.

Know the direction of clockwise and anticlockwise.

Identify quadrilaterals and the polygons pentagon, hexagon and octagon.

Identify prisms and cones.

Identify cuboids, cubes, pyramids and spheres.

Possible Teaching Sequence

Recall and use addition and subtraction facts.

\Rightarrow Rapid recall of number bonds to 20 .

\Rightarrow Make links between practical calculations where the ones can be used to represent the tens e.g.

$$
100=30+70 .
$$

\Rightarrow Make links between written calculations where the ones can be used to represent tens e.g. $5+4=9 ; 50+40=90$ and $8-6=2 ; 80-60=20$.

Add and subtract numbers using concrete...

a 2-digit number and ones
\Rightarrow add and subtract ones without bridging 10 .
\Rightarrow add and subtract ones with bridging (use a number line to count on in ones from the larger number)
\Rightarrow use number bonds to add and subtract more efficiently when bridging through tens e.g.

$$
17+5=17+3+2 \text { and } 22-7=22-2-5 .
$$

a 2-digit number and tens
\Rightarrow add and subtract 10 using concrete materials.
\Rightarrow add and subtract 10 using 100 square, recognising how the tens digit changes.
\Rightarrow add and subtract multiples of ten using concrete, then pictorial and then abstract methods.

two, 2-digit numbers

\Rightarrow add two 2-digit numbers using concrete materials in a place value chart without and then with an exchange.
\Rightarrow add two, 2-digit numbers using numerals (in columns and number sentences).
\Rightarrow follow the above steps for subtracting two, 2-digit numbers.
\Rightarrow use number bonds when adding three, 1-digit numbers e.g. $3+5+7=3+7+5$

Stem Sentences
VOCABULARY

- 'I know that $5+4=9$ so I now that 5 tens + 4 tens $=9$ tens so 1 know that $50+40=90$
- 'I know that $8-6=2$ so 1 know that 8 tens -6 tens $=2$ tens so 1 know that $80-60=$ 20.'
- 'If the total of the ones column is equal to 10 or more then I must exchange.'
- 'Addition can be done in any order.
- 'Subtraction cannot be done in any order.'
- 'When adding or subtracting tens, the ones digit remains the same.
- Mental
- Calculate
- Calculation
- Add
- Addition
- Sum
- Tota
- Plus
- Altogether
- Subtract
- Subtraction
- Difference
- Fewer
- Less
- More
- Greater
- Takeaway
- Minus
- Number bond
- Re-ordering a subtraction statement so you always take away from the greater digit instead of exchanging e.g.

$$
35 \quad 5-8 \text { becomes } 8-5
$$

$$
\text { - } \underline{18}
$$

- Lining up columns incorrectly especially in terms of 2 digit - 1 digit etc.
- Knowledge of what 46-12 actually means e.g. 4-1 is actually 40-10.
\Rightarrow Efficient -the quickest way to solve a calculation
\Rightarrow Partition - to split or break a number into 2 or more parts.
\Rightarrow Column - an arrangement of objects or numbers in a vertical line, side by side.
\Rightarrow Row - an arrangement of objects or numbers in a horizontal line, side by side.

Key Obiectives	Possible Teaching Sequence	Stem Sentences	Vocabulary
- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. - Make connections between arrays, number patterns and counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	\Rightarrow Use sets of equal groups of objects for repeated addition. \Rightarrow Demonstrate commutativity e.g. through use of arrays.	- 'The groups are equal because there are the same number of objects in each group.' - 'The groups are unequal because there are a different number of objects in each group.' - 'There are $2+2+2$ so we can write this as 2×3.' - 'Factor times factor is equal to product.'	- Multiplication - Division - Multiply - Divide - Calculate
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals $(=)$ signs.	2×4 is the same as 4×2 \Rightarrow Make links between repeated addition and multiplication		- Mental - Recall
- Calculate the answer to multiplication and division sums using concrete objects, pictorial representations and arrays with the support of the teacher.	\Rightarrow Make links between repeated addition and multiplication through introduction of x sign to represent 'lots of' and 'multiplied by'. \Rightarrow Use concrete, pictorial and abstract representations to find totals when counting in 2 s , then in 5 s and then in 10 s .		- Half - Efficient - Array
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.	\Rightarrow Use concrete or pictorial representations to share and group when dividing by 2 . \Rightarrow Understand that odd numbers cannot be shared/grouped equally when dividing by 2 . \Rightarrow Use concrete or pictorial representations to share and group when dividing by 5 . \Rightarrow Use concrete or pictorial representations to share and group when dividing by 10 .		- Groups of - Lots of - Times - Repeated - Left - Odd - Even
Common Misconceptions	PATtERNS	Key Definitions	
- Writing/saying division statement in the wrong order e.g. $5 \div 45 \text { instead of } 45 \div 5$ - Not realising that multiplication is commutative e.g. Not recognising that 6×5 is the same as 5×6.	2 times tables - All even; - Doubling. 5 times tables - Ends in 0 or 5; - Half the 10 times table; - Even multiples of 5 are also multiples of 10 . 10 times tables - Double the 5 times table; - Always ends in 0; - Always a multiple of 5 .	$\begin{aligned} & \Rightarrow \text { Factor - a whole number that divides exactly into another number. } \\ & \Rightarrow \text { Product - the result when two numbers are multiplied together. } \\ & \Rightarrow \text { Equal - the same amount. } \\ & \Rightarrow \text { Unequal - different amounts. } \\ & \Rightarrow \text { Multiple - the product of one number multiplied by another. } \\ & \Rightarrow \text { Divide - to share or group a number into equals parts. } \end{aligned}$	

Key Objectives

- Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity.
- Recognise, find and name $1 / 2$ as one of two equal parts of an object, shape or quantity.
- Recognise find and name $1 / 4$ as one of four equal parts of an object, shape or quantity.
- Write simple fractions e.g. $1 / 2$ of $6=3$ and recognise the equivalent of $2 / 4=1 / 2$.

Possible Teaching Sequence
\Rightarrow Make equal parts by splitting sets of objects and pictorial representations.
\Rightarrow Recognise $1 / 2$ in different contexts and find $1 / 2$ of a set of objects or quantity.
\Rightarrow Find quarters in different contexts.
\Rightarrow Explore equivalence of $2 / 4$ and $1 / 2$ practically.
\Rightarrow Find $3 / 4$ by splitting quantities into 4 equal groups and then combining 3 of the groups.
\Rightarrow Find $1 / 3$ by splitting quantities into 3 equal groups.
\Rightarrow Use a number line to count in fractions ($1 / 4,1 / 2$ and $1 / 3$) and know that fractions can add up to more than one whole.
$\begin{array}{lllllllllll}0 & 1 / 4 & 1 / 2 & 3 / 4 & 1 & 1 / 4 & 1^{1} / 2 & 1^{3} / 4 & 2 & 2^{1} / 4 & 2^{1} / 2\end{array}$

COMMON MISCONCEPTIONS

- Equal parts have to look the same (but they do not) e.g.

- Assuming that 3 parts is always thirds (even when they are not equal parts) e.g

- $1 / 4$ is bigger than $1 / 3$ and $1 / 2$ because the denominator is larger.

Stem Sentences

- $12 / 4$ is the same as $1 / 2$.
- 'A part is smaller than the whole.'
- 'The whole has been divided into equal parts.'
- 'Halving is the same as dividing by 2.'
- 'A quarter is half of a half.'

Vocabulary

- Part
- Equal
- Unequal
- Whole
- Same
- Different
- Half/Halves
- Quarter
- Divide
\Rightarrow Fraction - an equal part of something.
\Rightarrow Third - one of three equal parts.

Key Objectives

- Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity $(\mathrm{l} / \mathrm{ml})$ to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels.
- Measure and begin to record the following: lengths and heights; mass and weight; capacity and volume and time-hours, minutes and seconds.
- Compare and order lengths, mass, volume/capacity and record the results using $<,>$, or $=$.
- Compare, describe and solve practical problems for length and heights; mass and weight; capacity and volume and time.
- Recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value.
- Find different combinations of coins that equal the same amounts of money.
- Recognise and know the value of different denominations of coins and notes.
- Compare and sequence intervals of time.
- Sequence events in chronological order using language
- Recognise and use the language relating to dates, including days of the week, weeks, months and years.
- Tell and write the time to five minutes including quarter past/to the hour and draw the hands on a clock face to show these times.
- Know the number of minutes in an hour and the number of hours in a day.
- Tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.

possible Teaching Sequence

Length \& Height
\Rightarrow Measure a variety of objects using a ruler, tape measure or metre stick-practically then reading scales on images
\Rightarrow Compare the length of 2 objects and order more than 2 lengths

Mass \& Weigh

\Rightarrow Compare mass of different objects using balance scales.
\Rightarrow Use gram/kilogram weights to measure the mass of objects on a balance scale.
\Rightarrow Weigh objects on standard weighing scales and record mass of objects represented pictorially.

Volume \& Capacity

\Rightarrow Practically investigate volume and capacity using a variety of containers.
\Rightarrow Explore a variety of cylinders and jugs to measure in ml and I .
\Rightarrow Compare volume and capacity of different containers-move from concrete to visual representations.

Temperature

\Rightarrow Use thermometers to measure temperatures at different times and places around school.
\Rightarrow Compare temperatures practically and those represented visually

Money

\Rightarrow Know the value of coins and find the totals of sets of coins-all the same and then different combinations
\Rightarrow Know the value of notes $£ 5, £ 10$ and $£ 20$ and find totals of notes-all the same and then different combinations
\Rightarrow Find the totals of notes and coins
\Rightarrow Select coins to make an amount (practically, pictorially and abstract)
\Rightarrow Explore different ways of making the same amount and compare 2 different values of coins and/or notes.
\Rightarrow Add amounts of money and find the difference between two amounts
\Rightarrow Find the change from given amounts
Time
\Rightarrow Read and write times to the hour and half past.
\Rightarrow Read and draw times 'quarter to' and 'quarter past'.
\Rightarrow Read and show time to 5 minute intervals
\Rightarrow Convert a time in minutes, to hours and minutes e.g. 68 minutes $=1$ hour and 8 minutes.
\Rightarrow Calculate the duration of an event when given the start and end times \Rightarrow Compare and order times and durations.

Stem Sentences

- 'There are 24 hours in 1 day.'
- 'There are 60 minutes in 1 hour.'
- 'Cent means 100; there are 100 cm in 1 metre.'
- 'There are 100 p in $£ 1$ '
- 'Capacity is the amount a container or object can hold.'
- 'Volume is the amount of space occupied by an object.'

Key Definitions

\Rightarrow Capacity - the amount a container or object can hold (measured in ml / l)
\Rightarrow Volume - amount of space occupied by an object (measured in cm^{3}).
\Rightarrow Scale - lines on measuring instruments that identify the measurement.
\Rightarrow Mass - the amount of matter or substance that makes up an object.
Key Objectives

- Identify and describe the properties of 2D shapes,
including, the number of sides and line symmetry in a including, the number of sides and line symmetry in a vertical line.

- Recognise and name common 2D shapes.

- Identify and describe the properties of 3D shapes, including the number of edges, vertices and faces.
- Recognise and name common 3D shapes.
- Identify 2D shapes on the surface of 3D shapes.
- Compare and sort common 2D and 3D shapes and everyday objects.
- Order and arrange combinations of mathematical objects in patterns and sequences.
- Use mathematical vocabulary to describe position, direction and movement, including in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turnsclockwise and anticlockwise.
- Describe position, directions and movements, including whole, half, quarter and three quarter turns.

Possible Teaching Sequence

Geometry: Shape

\Rightarrow Revise recognition and naming of 2D and 3D shapes in varying sizes and orientations.
\Rightarrow Describe properties of 2D shapes, including irregular shapes (sides and corners/vertices)
\Rightarrow Create 2D shapes using geoboards.
\Rightarrow Explore vertical lines of symmetry in 2D shapes (folding papers and use of mirrors).
\Rightarrow Sort 2D shapes into different categories.
\Rightarrow Create patterns using 2D shapes including different orientations.
\Rightarrow Recognise a repeated pattern and continue the pattern using concrete materials and pictorially.
\Rightarrow Explore $3 D$ shapes to identify 2D shapes on their surface.
\Rightarrow Identify an edge as the line where two faces meet.
\Rightarrow Identify a vertex as the point where two or more edges meet
\Rightarrow Sort 3D shapes in different ways.
\Rightarrow Create patterns using 3D objects, including different orientations.

Geometry: Position and Direction.

\Rightarrow Practically give and follow directions.
\Rightarrow Write and record routes on grids.
\Rightarrow Practically turn objects using the language: full, half, quarter, threequarter turns; clockwise and anti-clockwise.
\Rightarrow Describe turns that objects and shapes have made.
\Rightarrow Describe movement and turns to record directions-use PE and Computing also.

Stem Sentences

Vocabulary

- 'Half turn means you or the object will face the opposite way.'
- 'If something is symmetrical it can be divided into 2 matching half shapes.'
- '2D shapes have sides and corners/ vertices.'
- '3D shapes have faces, edges and vertices.'
- 'A side is the line between 2 vertices.'
- 'A corner/vertex is the point where 2 sides meet.'
- 'An edge is where 2 faces meet.'
- 'A vertex is where 2 or more edges meet.'
- 'If something moves clockwise it goes around to the right, like the hands of a clock.'
- 'If something moves anticlockwise it goes around to the left.'
- Pentagon
- Hexagon
- Octagon
- Prism
- Side
- Corner/vertex
- Face
- Edge
- Vertex/vertices
- Property
- Sort
- Flat
- Curved
- Straight
- Orientation
- Forwards
- Backwards
- Up, down, left, right
- Direction
- Movement
- Turn
- Clockwise/anticlockwise
- Repeat
- Continue

Common Misconceptions

- Thinking that a square is no longer a square if it has been rotated e.g.
- Not knowing that irregular six-sided shapes are still hexagons, five-sided shapes are still pentagons etc. For example, knowing that this is a pentagon
 but thinking this is not \square
- Only recognising the properties of 3D shapes that can be seen and counted in visual representations i.e. only counting the faces they can see in an image.

Key Definitions

\Rightarrow Face - a flat surface within a 3D shape.
\Rightarrow Edge - the line where two faces meet.
\Rightarrow Vertex - the point where two or more edges meet.
\Rightarrow Side - the line between 2 vertices.
\Rightarrow Line of symmetry - a line that cuts a shape/pattern in half so that both sides match exactly.
\Rightarrow Rotate - to turn something around a given point.
\Rightarrow Pattern - a sequence that repeats.

Key Objectives	Possible Teaching Sequence	Stem Sentences	Vocabulary
- Interpret and construct simple pictograms, tally charts, block diagrams and simple tables. - Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity. - Ask and answer questions about totalling and comparing categorical data.	Interpret and construct simple pictograms, tally charts, block diagrams and simple tables. \Rightarrow Construct tally charts- linking to the wider curriculum where possible. \Rightarrow Complete tally charts with missing tallies or totals. \Rightarrow Interpret tally charts-answering questions. \Rightarrow Build pictograms using concrete apparatus-both horizontally and vertically. \Rightarrow Create pictograms, using data from tallies, by drawing own pictures. \Rightarrow Complete missing columns or rows within a pictogram. \Rightarrow Interpret and answer questions about data presented in a pictogram, including comparison of categories. \Rightarrow Draw pictograms where symbols represent 2,5 or 10 items. \Rightarrow Build block diagrams using cubes. \Rightarrow Draw block diagrams using number line knowledge for scale. \Rightarrow Interpret block diagrams-answering questions.	- 'Each symbol represents $\underline{2}$ so half a symbol represents $\underline{1}$.'	- Total - Altogether - More - Less - Difference - Complete - Construct - Horizontal - Vertical - Block diagram - Column - Row - Represent - Interpret - Symbol - Scale - Key - Tally chart - Table - Axis - Category - Compare - Same
Common Misconceptions Key Definitions			
- Ignoring key $=2$ then answering as 3 instead of 6 or as $1 / 2$ instead of 1 . - Interpreting 'How many more...' as an addition or scale reading exercise, instead of as subtraction.		\Rightarrow Tally - a mark used for counting results $\underline{\text { OR a way of keeping }}$ count by drawing marks. \Rightarrow Pictogram -use of pictures or symbols to present information. \Rightarrow Block diagram - a graph using blocks to show quantities or numbers.	

Problem solving and reasoning should be applied throughout all teaching not just within isolated lessons.

PROBLEM-SOLVING AND REASONING.

The following strategies are a very powerful way of developing pupils' problem-solving and reasoning skills and can be used flexibly across all strands of maths.

- Spot the mistake/Which is different?
- True or false?
- What comes next?
- Do, then explain.
- Make up an example/Write more statements/Create a question/Another and another.
- Possible answers/other possibilities.
- Missing numbers/Missing symbols/Missing information.
- Working backwards/Use of inverse/Undoing/Unpicking.
- Hard and easy questions/Order from easiest to hardest.
- What else do you know?/Use a fact.
- Fact families.
- Convince me/Prove it/Generalising/Explain thinking
- Connected calculations.
- Make an estimate/Size of an answer
- Always, sometimes, never.
- Making links/Application.
- Can you find?
- Odd one out.
- Complete/continue the pattern.
- Ordering.
- The answer is...
- Visualising
- Answer free zone.
- Justify.

PROBLEM-SOLVING AND REASONING EXAMPLES FOR YEAR 2

